Learn R Programming

RxODE

Overview

RxODE is an R package for solving and simulating from ode-based models. These models are convert the RxODE mini-language to C and create a compiled dll for fast solving. ODE solving using RxODE has a few key parts:

Installation

You can install the released version of RxODE from CRAN with:

install.packages("RxODE")

You can install the development version of RxODE with

devtools::install_github("nlmixrdevelopment/RxODE")

To build models with RxODE, you need a working c compiler. To use parallel threaded solving in RxODE, this c compiler needs to support open-mp.

You can check to see if R has working c compiler you can check with:

## install.packages("pkgbuild")
pkgbuild::has_build_tools(debug = TRUE)

If you do not have the toolchain, you can set it up as described by the platform information below:

Windows

In windows you may simply use installr to install rtools:

install.packages("installr")
library(installr)
install.rtools()

Alternatively you can download and install rtools directly.

Mac OSX

To get the most speed you need OpenMP enabled and compile RxODE with that compiler. There are various options and the most up to date discussion about this is likely the data.table installation faq for MacOS. The last thing to keep in mind is that RxODE uses the code very similar to the original lsoda which requires the gfortran compiler to be setup as well as the OpenMP compilers.

If you are going to be using RxODE and nlmixr together and have an older mac computer, I would suggest trying the following:

library(symengine)

If this crashes your R session then the binary does not work with your Mac machine. To be able to run nlmixr, you will need to compile this package manually. I will proceed assuming you have homebrew installed on your system.

On your system terminal you will need to install the dependencies to compile symengine:

brew install cmake gmp mpfr libmpc

After installing the dependencies, you need to reinstall symengine:

install.packages("symengine", type="source")
library(symengine)

Linux

To install on linux make sure you install gcc (with openmp support) and gfortran using your distribution's package manager.

Development Version

Since the development version of RxODE uses StanHeaders, you will need to make sure your compiler is setup to support C++14, as described in the rstan setup page. For R 4.0, I do not believe this requires modifying the windows toolchain any longer (so it is much easier to setup).

Once the C++ toolchain is setup appropriately, you can install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("nlmixrdevelopment/RxODE")

Illustrated Example

The model equations can be specified through a text string, a model file or an R expression. Both differential and algebraic equations are permitted. Differential equations are specified by d/dt(var_name) = . Each equation can be separated by a semicolon.

To load RxODE package and compile the model:

library(RxODE)
#> RxODE 1.1.0 using 4 threads (see ?getRxThreads)
#>   no cache: create with `rxCreateCache()`

mod1 <-RxODE({
    C2 = centr/V2;
    C3 = peri/V3;
    d/dt(depot) =-KA*depot;
    d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
    d/dt(peri)  =                    Q*C2 - Q*C3;
    d/dt(eff)  = Kin - Kout*(1-C2/(EC50+C2))*eff;
})
#> 

Specify ODE parameters and initial conditions

Model parameters can be defined as named vectors. Names of parameters in the vector must be a superset of parameters in the ODE model, and the order of parameters within the vector is not important.

theta <- 
   c(KA=2.94E-01, CL=1.86E+01, V2=4.02E+01, # central 
     Q=1.05E+01,  V3=2.97E+02,              # peripheral
     Kin=1, Kout=1, EC50=200)               # effects

Initial conditions (ICs) can be defined through a vector as well. If the elements are not specified, the initial condition for the compartment is assumed to be zero.

inits <- c(eff=1);

If you want to specify the initial conditions in the model you can add:

eff(0) = 1

Specify Dosing and sampling in RxODE

RxODE provides a simple and very flexible way to specify dosing and sampling through functions that generate an event table. First, an empty event table is generated through the "eventTable()" function:

ev <- eventTable(amount.units='mg', time.units='hours')

Next, use the add.dosing() and add.sampling() functions of the EventTable object to specify the dosing (amounts, frequency and/or times, etc.) and observation times at which to sample the state of the system. These functions can be called multiple times to specify more complex dosing or sampling regiments. Here, these functions are used to specify 10mg BID dosing for 5 days, followed by 20mg QD dosing for 5 days:

ev$add.dosing(dose=10000, nbr.doses=10, dosing.interval=12)
ev$add.dosing(dose=20000, nbr.doses=5, start.time=120,
              dosing.interval=24)
ev$add.sampling(0:240)

If you wish you can also do this with the mattigr pipe operator %>%

ev <- eventTable(amount.units="mg", time.units="hours") %>%
  add.dosing(dose=10000, nbr.doses=10, dosing.interval=12) %>%
  add.dosing(dose=20000, nbr.doses=5, start.time=120,
             dosing.interval=24) %>%
  add.sampling(0:240)

The functions get.dosing() and get.sampling() can be used to retrieve information from the event table.

head(ev$get.dosing())
#>   id low time high       cmt   amt rate ii addl evid ss dur
#> 1  1  NA    0   NA (default) 10000    0 12    9    1  0   0
#> 2  1  NA  120   NA (default) 20000    0 24    4    1  0   0
head(ev$get.sampling())
#>   id low time high   cmt amt rate ii addl evid ss dur
#> 1  1  NA    0   NA (obs)  NA   NA NA   NA    0 NA  NA
#> 2  1  NA    1   NA (obs)  NA   NA NA   NA    0 NA  NA
#> 3  1  NA    2   NA (obs)  NA   NA NA   NA    0 NA  NA
#> 4  1  NA    3   NA (obs)  NA   NA NA   NA    0 NA  NA
#> 5  1  NA    4   NA (obs)  NA   NA NA   NA    0 NA  NA
#> 6  1  NA    5   NA (obs)  NA   NA NA   NA    0 NA  NA

You may notice that these are similar to NONMEM event tables; If you are more familiar with NONMEM data and events you could use them directly with the event table function et

ev  <- et(amountUnits="mg", timeUnits="hours") %>%
  et(amt=10000, addl=9,ii=12,cmt="depot") %>%
  et(time=120, amt=2000, addl=4, ii=14, cmt="depot") %>%
  et(0:240) # Add sampling 

You can see from the above code, you can dose to the compartment named in the RxODE model. This slight deviation from NONMEM can reduce the need for compartment renumbering.

These events can also be combined and expanded (to multi-subject events and complex regimens) with rbind, c, seq, and rep. For more information about creating complex dosing regimens using RxODE see the RxODE events vignette.

Solving ODEs

The ODE can now be solved by calling the model object's run or solve function. Simulation results for all variables in the model are stored in the output matrix x.

x <- mod1$solve(theta, ev, inits);
knitr::kable(head(x))
timeC2C3depotcentrperieff
00.000000.000000010000.0000.0000.00001.000000
144.375550.91982987452.7651783.897273.18951.084664
254.882962.67298255554.3702206.295793.87581.180825
351.903434.45649274139.5422086.5181323.57831.228914
444.497385.98070763085.1031788.7951776.27021.234610
536.484347.17749812299.2551466.6702131.71691.214742

You can also solve this and create a RxODE data frame:

x <- mod1 %>% rxSolve(theta, ev, inits);
x
#> ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ Solved RxODE object ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂
#> ── Parameters (x$params): ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#>      V2      V3      KA      CL       Q     Kin    Kout    EC50 
#>  40.200 297.000   0.294  18.600  10.500   1.000   1.000 200.000 
#> ── Initial Conditions (x$inits): ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> depot centr  peri   eff 
#>     0     0     0     1 
#> ── First part of data (object): ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> # A tibble: 241 x 7
#>    time    C2    C3  depot centr  peri   eff
#>     [h] <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
#> 1     0   0   0     10000     0     0   1   
#> 2     1  44.4 0.920  7453. 1784.  273.  1.08
#> 3     2  54.9 2.67   5554. 2206.  794.  1.18
#> 4     3  51.9 4.46   4140. 2087. 1324.  1.23
#> 5     4  44.5 5.98   3085. 1789. 1776.  1.23
#> 6     5  36.5 7.18   2299. 1467. 2132.  1.21
#> # … with 235 more rows
#> ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

This returns a modified data frame. You can see the compartment values in the plot below:

library(ggplot2)
plot(x,C2) + ylab("Central Concentration")

Or,

plot(x,eff)  + ylab("Effect")

Note that the labels are automatically labeled with the units from the initial event table. RxODE extracts units to label the plot (if they are present).

Related R Packages

ODE solving

This is a brief comparison of pharmacometric ODE solving R packages to RxODE.

There are several R packages for differential equations. The most popular is deSolve.

However for pharmacometrics-specific ODE solving, there are only 2 packages other than RxODE released on CRAN. Each uses compiled code to have faster ODE solving.

  • mrgsolve, which uses C++ lsoda solver to solve ODE systems. The user is required to write hybrid R/C++ code to create a mrgsolve model which is translated to C++ for solving.

    In contrast, RxODE has a R-like mini-language that is parsed into C code that solves the ODE system.

    Unlike RxODE, mrgsolve does not currently support symbolic manipulation of ODE systems, like automatic Jacobian calculation or forward sensitivity calculation (RxODE currently supports this and this is the basis of nlmixr's FOCEi algorithm)

  • dMod, which uses a unique syntax to create "reactions". These reactions create the underlying ODEs and then created c code for a compiled deSolve model.

    In contrast RxODE defines ODE systems at a lower level. RxODE's parsing of the mini-language comes from C, whereas dMod's parsing comes from R.

    Like RxODE, dMod supports symbolic manipulation of ODE systems and calculates forward sensitivities and adjoint sensitivities of systems.

    Unlike RxODE, dMod is not thread-safe since deSolve is not yet thread-safe.

And there is one package that is not released on CRAN:

  • PKPDsim which defines models in an R-like syntax and converts the system to compiled code.

    Like mrgsolve, PKPDsim does not currently support symbolic manipulation of ODE systems.

    PKPDsim is not thread-safe.

The open pharmacometrics open source community is fairly friendly, and the RxODE maintainers has had positive interactions with all of the ODE-solving pharmacometric projects listed.

PK Solved systems

RxODE supports 1-3 compartment models with gradients (using stan math's auto-differentiation). This currently uses the same equations as PKADVAN to allow time-varying covariates.

RxODE can mix ODEs and solved systems.

The following packages for solved PK systems are on CRAN

  • mrgsolve currently has 1-2 compartment (poly-exponential models) models built-in. The solved systems and ODEs cannot currently be mixed.
  • pmxTools currently have 1-3 compartment (super-positioning) models built-in. This is a R-only implementation.
  • PKPDmodels has a one-compartment model with gradients.

Non-CRAN libraries:

  • PKADVAN Provides 1-3 compartment models using non-superpositioning. This allows time-varying covariates.

Copy Link

Version

Install

install.packages('RxODE')

Monthly Downloads

121

Version

1.1.5

License

GPL (>= 3)

Issues

Pull Requests

Stars

Forks

Maintainer

Wenping Wang

Last Published

March 23rd, 2022

Functions in RxODE (1.1.5)

coef.RxODE

Return the RxODE coefficients
invWR1d

One correlation sample from the Inverse Wishart distribution
RxODE

Create an ODE-based model specification
.rxWithOptions

Temporarily set options then restore them while running code
.rxWithSink

With one sink, then release
.rxWithWd

Temporarily set options then restore them while running code
gammapInv

gammapInv and gammapInva: Inverses of normalized gammap function
gammaq

Gammaq: normalized upper incomplete gamma function
add.dosing

Add dosing to eventTable
.s3register

Register a method for a suggested dependency
is.rxEt

Check to see if this is an rxEt object.
gammap

Gammap: normalized lower incomplete gamma function
print.RxODE

Print information about the RxODE object.
gammapDer

gammapDer: derivative of gammap
+.rxSolve

Update Solved object with '+'
rxAllowUnload

Allow unloading of dlls
rxCbindStudyIndividual

Bind the study parameters and individual parameters
rxClean

Cleanup anonymous DLLs by unloading them
rxCompile

Compile a model if needed
rxCat

Use cat when RxODE.verbose is TRUE
etRbind

Combining event tables
etExpand

Expand additional doses
rxDynUnload

Unload RxODE object
rxAssignPtr

Assign pointer based on model variables
rxDerived

Calculate derived parameters for the 1-, 2-, and 3- compartment linear models.
rxDfdy

Jacobian and parameter derivatives
rxD

Add to RxODE's derivative tables
rxFun

Add user function to RxODE
rxForget

Clear memoise cache for RxODE
rxInv

Invert matrix using RcppArmadillo.
rxDelete

Delete the DLL for the model
rxGetLin

Get the linear compartment model true function
rxParseErr

Prepare Error function for inclusion in RxODE
rxIsCurrent

Checks if the RxODE object was built with the current build
rxEvid

EVID formatting for tibble and other places.
rxGenSaem

Generate pred-only SAEM RxODE model
rxParsePk

Parse PK function for inclusion in RxODE
rxIs

Check the type of an object using Rcpp
rxMd5

Return the md5 of an RxODE object or file
rxIsLoaded

Determine if the DLL associated with the RxODE object is loaded
findLhs

Find the assignments in R expression
rxReq

Require namespace, otherwise throw error.
rxReload

Reload RxODE DLL
rxSetSilentErr

Silence some of RxODE's C/C++ messages
lowergamma

lowergamma: upper incomplete gamma function
forderForceBase

Force using base order for RxODE radix sorting
rxSetIni0

Set Initial conditions to time zero instead of the first observed/dosed time
rxModelVars

All model variables for a RxODE object
rxProgress

RxODE progress bar functions
rxSetProd

Defunct setting of product
rxcauchy

Simulate Cauchy variable from threefry generator
rxToSE

RxODE to symengine environment
rxTheme

rxTheme is the RxODE theme for plots
reexports

Objects exported from other packages
phi

Cumulative distribution of standard normal
rxSetSum

Defunct setting of sum
rinvchisq

Scaled Inverse Chi Squared distribution
rxchisq

Simulate chi-squared variable from threefry generator
rxnorm

Simulate random normal variable from threefry/vandercorput generator
rxodeTest

Wrap a test in RxODE
.clearPipe

Clear/Set pipeline
.rxGenFoce

Generate FOCE without interaction
etTrans

Event translation for RxODE
eventTable

Create an event table object
as.et

Coerce object to data.frame
etSeq

Sequence of event tables
rxSetupIni

Setup the initial conditions.
add.sampling

Add sampling to eventTable
etRep

Repeat an RxODE event table
getRxThreads

Get/Set the number of threads that RxODE uses
rxDll

Return the DLL associated with the RxODE object
rxGetModel

Get model properties without compiling it.
rxDynLoad

Load RxODE object
rxPrune

Prune branches (ie if/else) from RxODE
rxSyntaxFunctions

A list and description of Rode supported syntax functions
rxTempDir

Get the RxODE temporary directory
rxSetupScale

Setup the initial conditions.
gammaqInv

gammaqInv and gammaqInva: Inverses of normalized gammaq function
logit

logit and inverse logit (expit) functions
is.rxSolve

Check to see if this is an rxSolve object.
guide_none

Empty Guide
rxUse

Use model object in your package
genShinyApp.template

Generate an example (template) of a dosing regimen shiny app
print.rxCoef

Print the rxCoef object
rxpois

Simulate random Poisson variable from threefry generator
rxt

Simulate student t variable from threefry generator
rxValidate

Validate RxODE This allows easy validation/qualification of nlmixr by running the testing suite on your system.
stat_amt

Dosing/Amt geom/stat
stat_cens

Censoring geom/stat
rxSupportedFuns

Get list of supported functions
rxSetProgressBar

Set timing for progress bar
rxSimThetaOmega

Simulate Parameters from a Theta/Omega specification
rxSetSeed

Set the parallel seed for RxODE random number generation
rxShiny

Use Shiny to help develop an RxODE model
rxSuppressMsg

Respect suppress messages
rxexp

Simulate exponential variable from threefry generator
rxf

Simulate F variable from threefry generator
uppergamma

uppergamma: upper incomplete gamma function
rxBlockZeros

Creates a logical matrix for block matrixes.
print.rxDll

Print rxDll object
rxC

Return the C file associated with the RxODE object
rxGetRxODE

Get RxODE model from object
rxModels_

Get the rxModels information
rxNorm

Get the normalized model
probit

probit and inverse probit functions
rxChain

rxChain Chain or add item to solved system of equations
rLKJ1

One correlation sample from the LKJ distribution
rxCreateCache

This will create the cache directory for RxODE to save between sessions
rxCondition

Current Condition for RxODE object
rxIndLinStrategy

This sets the inductive linearization strategy for matrix building
rxInits

Initial Values and State values for a RxODE object
rxExpandGrid

Faster expand.grid
rxExpandIfElse

Expand if/else clauses into mutiple different types of lines.
rxHtml

Format rxSolve and related objects as html.
rxChain2

Second command in chaining commands
rxLhs

Left handed Variables
rxIndLinState

Set the preferred factoring by state
rxLock

Lock/unlocking of RxODE dll file
rxPkg

Creates a package from compiled RxODE models
rxRandNV

Create a random "normal" matrix using vandercorput generator
rxParams

Parameters specified by the model
rxOptExpr

Optimize RxODE for computer evaluation
rxParsePred

Prepare Pred function for inclusion in RxODE
rxRateDur

Creates a rxRateDur object
rxPhysicalDrives

Returns a list of physical drives that have been or currently are mounted to the computer.
rxS

Load a model into a symengine environment
rxPp

Simulate a from a Poisson process
rxRmvn

Simulate from a (truncated) multivariate normal
rxSolveFree

Free the C solving/parsing information.
rxSolve

Solving & Simulation of a ODE/solved system (and solving options) equation
rxTrans

Translate the model to C code if needed
rxReservedKeywords

A list and description of Rode supported reserved keywords
rxUnloadAll

Unloads all RxODE compiled DLLs
rxunif

Simulate uniform variable from threefry generator
rxweibull

Simulate Weibull variable from threefry generator
rxStack

Stack a solved object for things like ggplot
rxSymInvChol

Get Omega^-1 and derivatives
rxSplitPlusQ

This function splits a function based on + or - terms
rxState

State variables
summary.RxODE

Print expanded information about the RxODE object.
rxVersion

Version and repository for this dparser package.
rxSymInvCholCreate

Creates an object for calculating Omega/Omega^-1 and derivatives
rxSEinner

Setup Pred function based on RxODE object.
rxSumProdModel

Recast model in terms of sum/prod
summary.rxDll

Summary of rxDll object
rxgamma

Simulate gamma variable from threefry generator
rxWinSetup

Setup Windows components for RxODE
rxgeom

Simulate geometric variable from threefry generator
rxSymInvCholN

Return the dimension of the built-in derivatives/inverses
rxSyncOptions

Sync options with RxODE variables
rxbeta

Simulate beta variable from threefry generator
rxbinom

Simulate Binomial variable from threefry generator
cvPost

Sample a covariance Matrix from the Posterior Inverse Wishart distribution.
.setWarnIdSort

Turn on/off warnings for ID sorting.
et

Event Table Function