Learn R Programming

bikm1 (version 1.1.0)

bikm1-package: bikm1 package

Description

This package is designed to co-cluster a contingency (resp. binary) matrix, or double binary matrices in blocks respectively under the (normalized or not) Poisson (resp binary) Latent Block Model and the Multiple Latent Block Model. It enables to automatically select the number of row and column clusters and to compare partition estimations with reference partitions.

Arguments

Features

Package for the segmentation of the rows and columns inducing a co-clustering and automatically select the number of row and column clusters.

Model 1

BIKM1_LBM_Poisson . This fitting procedure produces a '>BIKM1_LBM_Poisson object.

Model 2

BIKM1_LBM_Binary . This fitting procedure produces a '>BIKM1_LBM_Binary object.

Model 3

BIKM1_MLBM_Binary . This fitting procedure produces a '>BIKM1_MLBM_Binary object.

References

Keribin, Celeux and Robert, The Latent Block Model: a useful model for high dimensional data. https://hal.inria.fr/hal-01658589/document

Govaert and Nadif. Co-clustering, Wyley (2013).

Keribin, Brault and Celeux. Estimation and Selection for the Latent Block Model on Categorical Data, Statistics and Computing (2014).

Robert. Classification croisee pour l'analyse de bases de donnees de grandes dimensions de pharmacovigilance. Thesis, Paris Saclay (2017).

Robert, Vasseur and Brault. Comparing high dimensional partitions with the Co-clustering Adjusted Rand Index, Journal of Classification, 38(1), 158-186 (2021).