The copBasic package is heavily oriented around copula theory and mathematical operations of copulas closely following one of the standard texts in the field by Nelsen (2006) and from 2015$+$ increasely Joe (2015) as well. Another good text is by Salvadori et al. (2007) and is cited herein, but about half of that excellent book is on univariate applications. The primal objective of copBasic is to provide a basic application programming inferface (API) into numerous results shown by authoritative texts on copulas. It is hoped in part that the package will help new inductees to copulas in their self study or potential course work.A few comments on notation are needed. A bold math typeface is used to represent a copula such as $\mathbf{\Pi}$ (see P
) for the independence copula. The syntax $\mathcal{R}\times\mathcal{R} \equiv \mathcal{R}^2$ denotes the orthogonal domain of two real numbers, and $\mathcal{I}\times\mathcal{I} \equiv \mathcal{I}^2$ denotes the orthogonal domain on the unit square of probabilities. Thus, limits of integration $[0,1]$ or $[0,1]^2$ are shown as $\mathcal{I}$ and $\mathcal{I}^2$, respectively.
The random variables $X$ and $Y$ respectively denote the horizontal and vertical directions in $\mathcal{R}^2$. Their probabilistic counterparts are uniformly distributed random variables on $[0,1]$, are respectively denoted as $U$ and $V$, and necessarily also are the directions in $\mathcal{I}^2$. Often realizations of these random variables are respectively $x$ and $y$ for $X$ and $Y$ and $u$ and $v$ for $U$ and $V$.
There is a distinction between nonexceedance probability $F$ and exceedance probability $1-F$. Both $u$ and $v$ are measures in nonexceedance (cumulative probability). Arguments to many functions herein are u
$= u$ and v
$= v$ and are almost exclusively nonexceedance but there are instances for which u
$= 1 - u = u'$ and v
$= 1 - v = v'$. The prime notation on the exceedance probabilities differs from the traditional $\overline{t}$ (overbar) notation that is used for survival distributions (e.g. $\overline{F}(x)$) because of a need to refer to these probabilities from time to time in the Examples sections---and thus nonmathematical typeface (e.g. v').
Italic typeface is used extensively and usually near the opening of function-by-function documentation to identify vocabulary words, such as survival copula (see surCOP
). This syntax tries to mimic and accentuate Roger B. Nelsen's word usage in Nelsen (2006) and to a lesser extent Joe (2015). The italics then is used to highlight this vocabulary in order to draw connections between concepts.
Helpful Navigation of the copBasic Package
Some helpful guideposts into the package are listed in the following table:
lclr{
Name Symbol Function Concept
Copula $\mathbf{C}(u,v)$ COP
copula theory
Survival copula $\hat\mathbf{C}(u',v')$ surCOP
copula theory
Joint survival function $\overline{\mathbf{C}}(u,v)$ surfuncCOP
copula theory
Co-copula $\mathbf{C}^\star(u',v')$ coCOP
copula theory
Dual of a copula $\tilde\mathbf{C}(u,v)$ duCOP
copula theory
Primary copula diagonal $\delta(t)$ diagCOP
copula theory
Secondary copula diagonal $\delta^\star(t)$ diagCOP
copula theory
Inverse copula diagonal $\delta^{(-1)}(f)$ diagCOPatf
copula theory
Blomqvist’s Beta $\beta_\mathbf{C}$ blomCOP
bivariate association
Gini's Gamma $\gamma_\mathbf{C}$ giniCOP
bivariate association
Hoeffding's Phi $\phi_\mathbf{C}$ hoefCOP
bivariate association
Lp distance $\phi_\mathbf{C} \rightarrow L_p$ LpCOP
bivariate association
Kendall's Tau $\tau_\mathbf{C}$ tauCOP
bivariate association
Semi-correlations $\rho_N^{-}(a)$ semicorCOP
bivariate tail association
Semi-correlations $\rho_N^{+}(a)$ semicorCOP
bivariate tail association
Spearman's Rho $\rho_\mathbf{C}$ rhoCOP
bivariate association
Schweizer and Wolff's Sigma $\sigma_\mathbf{C}$ wolfCOP
bivariate association
Lower-bounds copula $\mathbf{W}(u,v)$ W
copula
Independence copula $\mathbf{\Pi}(u,v)$ P
copula
Upper-bounds copula $\mathbf{M}(u,v)$ M
copula
Fréchet{Frechet} Family copula $\mathbf{FF}(u,v)$ FRECHETcop
copula
Gumbel-Hougaard copula $\mathbf{GH}(u,v)$ GHcop
copula
Plackett copula $\mathbf{PL}(u,v)$ PLACKETTcop
copula
PSP copula $\mathbf{PSP}(u,v)$ PSP
copula
Empirical copula $\mathbf{C}_n(u,v)$ EMPIRcop
copula
Parametric simulation ${-}{-}$ simCOP
copula simulation
Parametric simulation ${-}{-}$ simCOPmicro
copula simulation
Empirical simulation ${-}{-}$ EMPIRsim
copula simulation
Empirical simulation ${-}{-}$ EMPIRsimv
copula simulation
Parametric copulatic surface ${-}{-}$ gridCOP
copulatic surface
Empirical copulatic surface ${-}{-}$ EMPIRgrid
copulatic surface
Density $c(u,v)$ densityCOP
copula density
Density visualization ${-}{-}$ densityCOPplot
copula density
}
Many functions in the package make the distinction between $V$ with respect to (wrt) $U$ and $U$ wrt $V$, and a guide through the nomenclature involving wrt distinctions is listed in the following table:
lclr{
Name Symbol Function Concept
Copula inversion $V$ wrt $U$ COPinv
copula operator
Copula inversion $U$ wrt $V$ COPinv2
copula operator
Copula derivative $\delta \mathbf{C}/\delta u$ derCOP
copula operator
Copula derivative $\delta \mathbf{C}/\delta v$ derCOP2
copula operator
Copula derivative inversion $V$ wrt $U$ derCOPinv
copula operator
Copula derivative inversion $U$ wrt $V$ derCOPinv2
copula operator
Level curves $t \mapsto \mathbf{C}(u=U, v)$ level.curvesCOP
copula theory
Level curves $t \mapsto \mathbf{C}(u, v=V)$ level.curvesCOP2
copula theory
Level set $V$ wrt $U$ level.setCOP
copula theory
Level set $U$ wrt $V$ level.setCOP2
copula theory
Median regression $V$ wrt $U$ med.regressCOP
copula theory
Median regression $U$ wrt $V$ med.regressCOP2
copula theory
Quantile regression $V$ wrt $U$ qua.regressCOP
copula theory
Quantile regression $U$ wrt $V$ qua.regressCOP2
copula theory
Copula section $t \mapsto \mathbf{C}(t,a)$ sectionCOP
copula theory
Copula section $t \mapsto \mathbf{C}(a,t)$ sectionCOP
copula theory
}
The two tables do not include all of the myriad of special functions to support similar operations on empirical copulas. All empirical copula operators and utilites are prepended with EMPIR
in the function name. An additional note concerning package nomenclature is that an appended 2
to a function name uniquely indicates
$U$ wrt $V$ (e.g. EMPIRgridderinv2
for an inversion of the partial derivatives $\delta \mathbf{C}/\delta v$ across the grid of the empirical copula).
Some additional functions that compute often salient features or characteristics of a copulas include those listed in the following table:
lclr{
Name Symbol Function Concept
Left-tail decreasing $V$ wrt $U$ isCOP.LTD
bivariate association
Left-tail decreasing $U$ wrt $V$ isCOP.LTD
bivariate association
Right-tail increasing $V$ wrt $U$ isCOP.RTI
bivariate association
Right-tail increasing $U$ wrt $V$ isCOP.RTI
bivariate association
Tail (lower) dependency $\lambda^L_\mathbf{C}$ taildepCOP
bivariate tail association
Tail (upper) dependency $\lambda^U_\mathbf{C}$ taildepCOP
bivariate tail association
Tail (lower) order $\kappa^L_\mathbf{C}$ tailordCOP
bivariate tail association
Tail (upper) order $\kappa^U_\mathbf{C}$ tailordCOP
bivariate tail association
Negatively quadrant dependency NQD isCOP.PQD
bivariate association
Positively quadrant dependency PQD isCOP.PQD
bivariate association
Permutation symmetry $\mathrm{permsym}$ isCOP.permsym
copula symmetry
Radial symmetry $\mathrm{radsym}$ isCOP.radsym
copula symmetry
Skewness (Joe, 2015) $\eta(p; \psi)$ uvskewness
bivariate skewness
Kullback-Leibler divergence $\mathrm{KL}(f|g)$ kullCOP
bivariate inference
K-L sample size $n_{fg}$ kullCOP
bivariate inference
Vuong's Procedure ${-}{-}$ vuongCOP
bivariate inference
L-comoments (samp. distr.) ${-}{-}$ lcomCOPpv
experimental bivariate inference
}
The following table lists some important relations between various joint probability concepts, the copula, nonexceedance probabilities $u$ and $v$, and exceedance probabilities $u'$ and $v'$. A compact summary of these probability relations has obvious usefulness.
rcl{
Probability and Symbol Convention
$\mathrm{Pr}[\,U \le u, V \le v\,]$ $=$ $\mathbf{C}(u,v)$
$\mathrm{Pr}[\,U < u, V < v\,]$ $=$ $\hat\mathbf{C}(u',v')$
$\mathrm{Pr}[\,U \le u, V > v\,]$ $=$ $u - \mathbf{C}(u,v)$
$\mathrm{Pr}[\,U > u, V \le v\,]$ $=$ $v - \mathbf{C}(u,v)$
$\mathrm{Pr}[\,U \le u \mid V \le v\,]$ $=$ $\mathbf{C}(u,v)/v$
$\mathrm{Pr}[\,V \le v \mid U \le u\,]$ $=$ $\mathbf{C}(u,v)/u$
$\mathrm{Pr}[\,U \le u \mid V > v\,]$ $=$ $(u - \mathbf{C}(u,v))/(1 - v)$
$\mathrm{Pr}[\,V \le v \mid U > u\,]$ $=$ $(v - \mathbf{C}(u,v))/(1 - u)$
$\mathrm{Pr}[\,V \le v \mid U = u\,]$ $=$ $\delta \mathbf{C}(u,v)/\delta u$
$\mathrm{Pr}[\,U \le u \mid V = v\,]$ $=$ $\delta \mathbf{C}(u,v)/\delta v$
$\mathrm{Pr}[\,U > u \mathrm{\ or\ } V > v\,]$ $=$ $1 - \mathbf{C}(u',v')$
$\mathrm{Pr}[\,U \le v \mathrm{\ or\ } V \le v\,]$ $=$ $u + v - \mathbf{C}(u,v)$
}
One or two copulas can be blended or composited in interesting ways to create highly unique joint probability relations. The package provides the following functions for copula composition. And these compositing functions are all compatible with joint probability simulation as supported by simCOP
. Further functions composite2COP
and composite3COP
supporting two copulas each provide for each copula having its own parameter set.
ccl{
No. of copulas Compositing parameters Function
1 $\alpha, \beta$ composite1COP
2 $\alpha, \beta$ composite2COP
2 $\alpha, \beta, \kappa, \gamma$ composite3COP
}