Learn R Programming

fda.usc (version 1.1.0)

cond.mode: Conditional mode

Description

Computes the mode for conditional distribution function.

Usage

cond.mode(Fc,method="monoH.FC")

Arguments

Fc
Object estimated by cond.F function.
method
Specifies the type of spline to be used. Possible values are "diff", "fmm", "natural", "periodic" and "monoH.FC".

Value

  • Return the mode for conditional distribution function.
  • mode.condConditional mode.
  • ind.mode.condIndex of Conditional mode.

Details

The conditional mode is calculated as the maximum argument of the derivative of the conditional distribution function.

References

Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.

See Also

See Also as: cond.F, cond.quantile and splinefun .

Examples

Run this code
n= 500
t= seq(0,1,len=101)
beta = t*sin(2*pi*t)^2
x = matrix(NA, ncol=101, nrow=n)
y=numeric(n)
x0<-rproc2fdata(n,seq(0,1,len=101),sigma="wiener")
x1<-rproc2fdata(n,seq(0,1,len=101),sigma=0.1)
x<-x0*3+x1
fbeta = fdata(beta,t)
y<-inprod.fdata(x,fbeta)+rnorm(n,sd=0.1)

prx=x[1:100];pry=y[1:100]
ind=101;ind2=101:110
pr0=x[ind];pr10=x[ind2]
ndist=161
gridy=seq(-1.598069,1.598069, len=ndist)
## Conditional Function
I=5
## Time consuming
# res = cond.F(pr10[I], gridy, prx, pry, h=1)

# mcond=cond.mode(res)
# mcond2=cond.mode(res,method="diff")

Run the code above in your browser using DataLab