outliers.thres.lrt(fdataobj,nb=200,smo=0.05,trim=0.10,...)
outliers.lrt(fdataobj,nb=200,smo=0.05,trim=0.10,...)
outliers.depth.trim(fdataobj,nb=200,smo=0.05,trim=0.01,quan=0.5,
dfunc=depth.mode,...)
outliers.depth.pond(fdataobj,nb=200,smo=0.05,quan=0.5,
dfunc=depth.mode,...)
"quantile"(x,dfunc=depth.mode,
nb=200,smo=0.05,ns=0.01,...)
"quantile"(x,dfunc=depth.mode,trim=0.25,
nb=200,smo=0.05,ns=0.01,...)
fdata
class object.depth.mode
.outliers.lrt
). The threshold for outlier detection is given by the
outliers.thres.lrt
.
Outlier detection in functional data by depth measures:
i.-outliers.depth.pond
function weights the data according to depth.
ii.-outliers.depth.trim
function uses trimmed data.quantile.outliers.pond and quantile.outliers.trim functions provides the quantiles of the bootstrap samples for functional outlier detection by, respectively, weigthed and trimmed procedures. Bootstrap smoothing function (fdata.bootstrap
with nb
resamples) is applied to these weighted or trimmed data. If smo=0
smoothed bootstrap is not performed. The function returns a vector of size 1
xnb
with bootstrap replicas of the quantile.
Febrero-Bande, M., Galeano, P., and Gonzalez-Manteiga, W. (2008). Outlier detection in functional data by depth measures with application to identify abnormal NOx levels. Environmetrics 19, 4, 331-345.
Febrero-Bande, M., Galeano, P. and Gonzalez-Manteiga, W. (2007). A functional analysis of NOx levels: location and scale estimation and outlier detection. Computational Statistics 22, 3, 411-427.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. http://www.jstatsoft.org/v51/i04/
fdata.bootstrap
, Depth
.
## Not run:
# data(aemet)
# nb=20 # Time consuming
# out.trim<-outliers.depth.trim(aemet$temp,dfunc=depth.FM,nb=nb)
# plot(aemet$temp,col=1,lty=1)
# lines(aemet$temp[out.trim[[1]]],col=2)
# ## End(Not run)
Run the code above in your browser using DataLab