# DD-classif for functional data
data(tecator)
ab=tecator$absorp.fdata
ab1=fdata.deriv(ab,nderiv=1)
ab2=fdata.deriv(ab,nderiv=2)
gfat=factor(as.numeric(tecator$y$Fat>=15))
# DD-classif for p=1 functional data set
out01=classif.DD(gfat,ab,depth="mode",classif="np")
out02=classif.DD(gfat,ab2,depth="mode",classif="np")
# DD-plot in gray scale
ctrl<-list(draw=T,col=gray(c(0,.5)),alpha=.2)
out02bis=classif.DD(gfat,ab2,depth="mode",classif="np",control=ctrl)
# 2 depth functions (same curves)
out03=classif.DD(gfat,list(ab2,ab2),depth=c("RP","mode"),classif="np")
# DD-classif for p=2 functional data set
ldata<-list("ab"=ab2,"ab2"=ab2)
# Weighted version
out04=classif.DD(gfat,ldata,depth="mode",classif="np",w=c(0.5,0.5))
# Model version
out05=classif.DD(gfat,ldata,depth="mode",classif="np")
# Integrated version (for multivariate functional data)
out06=classif.DD(gfat,ldata,depth="modep",classif="np")
# DD-classif for multivariate data
data(iris)
group<-iris[,5]
x<-iris[,1:4]
out10=classif.DD(group,x,depth="RP",classif="lda")
summary.classif(out10)
out11=classif.DD(group,list(x,x),depth=c("MhD","RP"),classif="lda")
summary.classif(out11)
# DD-classif for functional data: g levels
data(phoneme)
mlearn<-phoneme[["learn"]]
glearn<-as.numeric(phoneme[["classlearn"]])-1
out20=classif.DD(glearn,mlearn,depth="FM",classif="glm")
out21=classif.DD(glearn,list(mlearn,mlearn),depth=c("FM","RP"),classif="glm")
summary.classif(out20)
summary.classif(out21)
Run the code above in your browser using DataLab