
Last chance! 50% off unlimited learning
Sale ends in
LR_test
performs a likelihood ratio test for a GMVAR or SGMVAR model
LR_test(gmvar1, gmvar2)# S3 method for lr
print(x, ..., digits = 4)
an object of class 'gmvar'
generated by fitGMVAR
or GMVAR
, containing
the freely estimated model.
an object of class 'gmvar'
generated by fitGMVAR
or GMVAR
, containing
the constrained model.
object of class 'lr'
generated by the function LR_test
.
currently not used.
how many significant digits to print?
Returns an object of class
print
: print method
Performs a likelihood ratio test, testing the null hypothesis that the true parameter value lies
in the constrained parameter space. Under the null, the test statistic is asymptotically
Note that this function does not verify that the two models are actually nested.
Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.
Virolainen S. 2020. Structural Gaussian mixture vector autoregressive model. Unpublished working paper, available as arXiv:2007.04713.
Wald_test
, fitGMVAR
, GMVAR
, diagnostic_plot
,
profile_logliks
, quantile_residual_tests
, cond_moment_plot
# NOT RUN {
## These are long running examples that use parallel computing!
## The below examples take around 1 minute to run.
# Load the data
data(eurusd, package="gmvarkit")
data <- cbind(10*eurusd[,1], 100*eurusd[,2])
colnames(data) <- colnames(eurusd)
# Structural GMVAR(2, 2), d=2 model identified similarly to Cholesky:
W22 <- matrix(c(1, NA, 0, 1), nrow=2, byrow=FALSE)
fit22s <- fitGMVAR(data, p=2, M=2, structural_pars=list(W=W22),
ncalls=1, seeds=4)
# The same model but the AR coefficients restricted to be the same
# in both regimes:
C_mat <- rbind(diag(2*2^2), diag(2*2^2))
fit22sc <- fitGMVAR(data, p=2, M=2, constraints=C_mat,
structural_pars=list(W=W22), ncalls=1, seeds=1)
# Test the AR constraints with likelihood ratio test:
LR_test(fit22s, fit22sc)
# }
Run the code above in your browser using DataLab