Learn R Programming

iClusterPlus (version 1.8.0)

iCluster: Integrative clustering of multiple genomic data types

Description

Given multiple genomic data types (e.g., copy number, gene expression, DNA methylation) measured in the same set of samples, iCluster fits a regularized latent variable model based clustering that generates an integrated cluster assigment based on joint inference across data types

Usage

iCluster(datasets, k, lambda, scalar=FALSE, max.iter=50,epsilon=1e-3)

Arguments

datasets
A list object containing m data matrices representing m different genomic data types measured in a set of n samples. For each matrix, the rows represent samples, and the columns represent genomic features.
k
Number of subtypes.
lambda
Vector of length-m lasso penalty terms.
scalar
If TRUE, assumes scalar covariance matrix Psi. Default is FALSE.
max.iter
Maximum iteration for the EM algorithm.
epsilon
EM algorithm convegence criterion.

Value

A list with the following elements.
meanZ
Relaxed cluster indicator matrix.
beta
Coefficient matrix.
clusters
Cluster assigment.
conv.rate
Convergence history.

References

Ronglai Shen, Adam Olshen, Marc Ladanyi. (2009). Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25, 2906-2912.

See Also

breast.chr17,plotiCluster, compute.pod

Examples

Run this code

data(breast.chr17)
fit=iCluster(breast.chr17, k=4, lambda=c(0.2,0.2))
plotiCluster(fit=fit, label=rownames(breast.chr17[[2]]))
compute.pod(fit)

#library(gplots)
#library(lattice)
#col.scheme = alist()
#col.scheme[[1]] = bluered(256)
#col.scheme[[2]] = greenred(256)
#cn.image=breast.chr17[[2]]
#cn.image[cn.image>1.5]=1.5
#cn.image[cn.image< -1.5]= -1.5
#exp.image=breast.chr17[[1]]
#exp.image[exp.image>3]=3
#exp.image[exp.image< -3]=3
#plotHeatmap(fit, datasets=list(cn.image,exp.image), type=c("gaussian","gaussian"),
#  row.order=c(FALSE,FALSE), width=5, col.scheme=col.scheme)

Run the code above in your browser using DataLab