Learn R Programming

iClusterPlus (version 1.8.0)

tune.iClusterPlus: Integrative clustering of multiple genomic data

Description

Given multiple genomic data (e.g., copy number, gene expression, DNA methylation) measured in the same set of samples, tune.iClusterPlus uses a series of lambda values to fit a regularized latent variable model based clustering that generates an integrated cluster assignment based on joint inference across data.

Usage

tune.iClusterPlus(cpus=8,dt1,dt2=NULL,dt3=NULL,dt4=NULL, type=c("gaussian","binomial","poisson","multinomial"), K=2,alpha=c(1,1,1,1),n.lambda=NULL,scale.lambda=c(1,1,1,1), n.burnin=200,n.draw=200,maxiter=20,sdev=0.05,eps=1.0e-4)

Arguments

cpus
Number of CPU used for parallel computation.
dt1
A data matrix. The rows represent samples, and the columns represent genomic features.
dt2
A data matrix. The rows represent samples, and the columns represent genomic features.
dt3
A data matrix. The rows represent samples, and the columns represent genomic features.
dt4
A data matrix. The rows represent samples, and the columns represent genomic features.
type
data type, which can be "gaussian","binomial","poisson", and"multinomial".
K
The number of eigen features. Given K, the number of cluster is K+1.
alpha
Vector of elasticnet penalty terms. At this version of iClusterPlus, elasticnet is not used. Therefore, all the elements of alpha are set to 1.
n.lambda
Number of lambda are tuned.
scale.lambda
A value between (0,1); the actual lambda values will be scale.lambda multiplying the lambda values of the uniform design.
n.burnin
Number of MCMC burnin.
n.draw
Number of MCMC draw.
maxiter
Maximum iteration for the EM algorithm.
sdev
standard deviation of random walk proposal.
eps
EM algorithm convergence criterion.

Value

A list with the two elements 'fit' and 'lambda', where fit itself is a list and lambda is a matrix. Each row of lambda is the lambda values used to fit iClusterPlus model. Each component of fit is an object return by iClusterPlus, one-to-one corresponding to the row of lambda. Each component of fit has the following objects.
alpha
Intercept parameter for the genomic features.
beta
Information parameter for the genomic features. The rows and the columns represent the genomic features and the coefficients for the latent variable, respectively.
clusters
Cluster assignment.
centers
Cluster centers.
meanZ
Latent variable.

References

Qianxing Mo, Sijian Wang, Venkatraman E. Seshan, Adam B. Olshen, Nikolaus Schultz, Chris Sander, R. Scott Powers, Marc Ladanyi, and Ronglai Shen. (2012). Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc. Natl. Acad. Sci. USA 110(11):4245-50.

See Also

plotiCluster,iClusterPlus,iCluster2,iCluster, compute.pod

Examples

Run this code
### see the users' guide iManul.pdf 

Run the code above in your browser using DataLab