## Not run:
# odd <- seq(from = 1, to = nrow(iris), by = 2)
# even <- odd + 1
# X.train <- iris[odd,-5]
# Class.train <- iris[odd,5]
# X.test <- iris[even,-5]
# Class.test <- iris[even,5]
#
# # common EEE covariance structure (which is essentially equivalent to linear discriminant analysis)
# irisMclustDA <- MclustDA(X.train, Class.train, modelType = "EDDA", modelNames = "EEE")
# summary(irisMclustDA, parameters = TRUE)
# summary(irisMclustDA, newdata = X.test, newclass = Class.test)
#
# # common covariance structure selected by BIC
# irisMclustDA <- MclustDA(X.train, Class.train, modelType = "EDDA")
# summary(irisMclustDA, parameters = TRUE)
# summary(irisMclustDA, newdata = X.test, newclass = Class.test)
#
# # general covariance structure selected by BIC
# irisMclustDA <- MclustDA(X.train, Class.train)
# summary(irisMclustDA, parameters = TRUE)
# summary(irisMclustDA, newdata = X.test, newclass = Class.test)
#
# plot(irisMclustDA)
# plot(irisMclustDA, dimens = 3:4)
# plot(irisMclustDA, dimens = 4)
#
# plot(irisMclustDA, what = "classification")
# plot(irisMclustDA, what = "classification", newdata = X.test)
# plot(irisMclustDA, what = "classification", dimens = 3:4)
# plot(irisMclustDA, what = "classification", newdata = X.test, dimens = 3:4)
# plot(irisMclustDA, what = "classification", dimens = 4)
# plot(irisMclustDA, what = "classification", dimens = 4, newdata = X.test)
#
# plot(irisMclustDA, what = "train&test", newdata = X.test)
# plot(irisMclustDA, what = "train&test", newdata = X.test, dimens = 3:4)
# plot(irisMclustDA, what = "train&test", newdata = X.test, dimens = 4)
#
# plot(irisMclustDA, what = "error")
# plot(irisMclustDA, what = "error", dimens = 3:4)
# plot(irisMclustDA, what = "error", dimens = 4)
# plot(irisMclustDA, what = "error", newdata = X.test, newclass = Class.test)
# plot(irisMclustDA, what = "error", newdata = X.test, newclass = Class.test, dimens = 3:4)
# plot(irisMclustDA, what = "error", newdata = X.test, newclass = Class.test, dimens = 4)
#
# # simulated 1D data
# n <- 250
# set.seed(1)
# triModal <- c(rnorm(n,-5), rnorm(n,0), rnorm(n,5))
# triClass <- c(rep(1,n), rep(2,n), rep(3,n))
# odd <- seq(from = 1, to = length(triModal), by = 2)
# even <- odd + 1
# triMclustDA <- MclustDA(triModal[odd], triClass[odd])
# summary(triMclustDA, parameters = TRUE)
# summary(triMclustDA, newdata = triModal[even], newclass = triClass[even])
# plot(triMclustDA)
# plot(triMclustDA, what = "classification")
# plot(triMclustDA, what = "classification", newdata = triModal[even])
# plot(triMclustDA, what = "train&test", newdata = triModal[even])
# plot(triMclustDA, what = "error")
# plot(triMclustDA, what = "error", newdata = triModal[even], newclass = triClass[even])
#
# # simulated 2D cross data
# data(cross)
# odd <- seq(from = 1, to = nrow(cross), by = 2)
# even <- odd + 1
# crossMclustDA <- MclustDA(cross[odd,-1], cross[odd,1])
# summary(crossMclustDA, parameters = TRUE)
# summary(crossMclustDA, newdata = cross[even,-1], newclass = cross[even,1])
# plot(crossMclustDA)
# plot(crossMclustDA, what = "classification")
# plot(crossMclustDA, what = "classification", newdata = cross[even,-1])
# plot(crossMclustDA, what = "train&test", newdata = cross[even,-1])
# plot(crossMclustDA, what = "error")
# plot(crossMclustDA, what = "error", newdata =cross[even,-1], newclass = cross[even,1])
# ## End(Not run)
Run the code above in your browser using DataLab