Learn R Programming

⚠️There's a newer version (0.3.8) of this package.Take me there.

An R package for metabarcoding research planning and analysis

Metabarcoding is revolutionizing microbial ecology and presenting new challenges:

  • Numerous database formats make taxonomic data difficult to parse, combine, and subset.
  • Stacked bar charts, commonly used to depict community diversity, lack taxonomic context and are limited by the number of discernible colors.
  • Barcode loci and primers are a source of under-explored bias.

Metacoder is an R package that attempts to addresses these issues:

  • Sources of taxonomic data can be extracted from most file formats and manipulated.
  • Community diversity can be visualized by color and size in a tree plot.
  • Primer specificity can be estimated with in silico PCR.

Installation

Stable releases are available on CRAN and can be installed in the standard way:

install.packages("metacoder")

The most recent version can be installed from Github:

devtools::install_github("ropensci/taxa")
devtools::install_github("grunwaldlab/metacoder")
library(metacoder)

Documentation

This is only a short demonstration. See the full documentation at http://grunwaldlab.github.io/metacoder_documentation.

Parsing

Many functions that used to be in metacoder have now been moved into the taxa package. These include the flexible parsers and dplyr-like data-manipulation functions. If you have an non-standard data format or want to use the more flexible taxa parsers, check out the intro to the taxa package here. Metacoder now has functions for parsing specific file formats used in metagenomics research. However, for this demonstration, we will be using a parser from the taxa package meant for tabular data.

Included in metacoder is an example dataset that is a subset of the Human Microbiome Project data. This dataset has two parts:

  • An abundance matrix called hmp_otus, with samples in columns and OTUs in rows
  • A sample information table called hmp_samples, with samples as rows and columns of information describing the samples (e.g. gender).

This is the preferred way to encode this type of abundance information in metacoder and taxa. Lets take a look at this data:

library(metacoder)
#> Loading required package: taxa
#> This is metacoder verison 0.2.1 (stable). If you use metacoder for published research, please cite our paper:
#> 
#> Foster Z, Sharpton T and Grunwald N (2017). "Metacoder: An R package for visualization and manipulation of community taxonomic diversity data." PLOS Computational Biology, 13(2), pp. 1-15. doi: 10.1371/journal.pcbi.1005404
#> 
#> Enter `citation("metacoder")` for a BibTeX entry for this citation.
print(hmp_otus)
#> # A tibble: 1,000 x 52
#>    otu_id lineage `700035949` `700097855` `700100489` `700111314` `700033744` `700109581`
#>    <chr>  <chr>         <int>       <int>       <int>       <int>       <int>       <int>
#>  1 OTU_9… r__Roo…           0           2           1           0           0           0
#>  2 OTU_9… r__Roo…           0           0           0           0           0           0
#>  3 OTU_9… r__Roo…           0           1           0           0           0           0
#>  4 OTU_9… r__Roo…           8          36          10           5          66          38
#>  5 OTU_9… r__Roo…           3          25           0           0           0           1
#>  6 OTU_9… r__Roo…          42         277          16          22          85         211
#>  7 OTU_9… r__Roo…           4          17          21           1          74          12
#>  8 OTU_9… r__Roo…           0           0           0           0           0           0
#>  9 OTU_9… r__Roo…           0           0           0           0           0           0
#> 10 OTU_9… r__Roo…           0           0           0           0           1           0
#> # ... with 990 more rows, and 44 more variables: `700111044` <int>, `700101365` <int>,
#> #   `700100431` <int>, `700016050` <int>, `700032425` <int>, `700024855` <int>,
#> #   `700103488` <int>, `700096869` <int>, `700107379` <int>, `700096422` <int>,
#> #   `700102417` <int>, `700114168` <int>, `700037540` <int>, `700106397` <int>,
#> #   `700113498` <int>, `700033743` <int>, `700105205` <int>, `700024238` <int>,
#> #   `700034183` <int>, `700038390` <int>, `700015973` <int>, `700038124` <int>,
#> #   `700107206` <int>, `700037403` <int>, `700098429` <int>, `700101224` <int>,
#> #   `700114615` <int>, `700024234` <int>, `700108596` <int>, `700101076` <int>,
#> #   `700105882` <int>, `700016902` <int>, `700102242` <int>, `700038231` <int>,
#> #   `700109394` <int>, `700102530` <int>, `700108229` <int>, `700099013` <int>,
#> #   `700098680` <int>, `700106938` <int>, `700014916` <int>, `700095535` <int>,
#> #   `700102367` <int>, `700101358` <int>
print(hmp_samples)
#> # A tibble: 50 x 3
#> # Groups:   body_site, sex [10]
#>    sample_id sex    body_site
#>    <chr>     <chr>  <chr>    
#>  1 700035949 female Nose     
#>  2 700097855 female Nose     
#>  3 700100489 female Nose     
#>  4 700111314 female Nose     
#>  5 700033744 female Nose     
#>  6 700109581 male   Nose     
#>  7 700111044 male   Nose     
#>  8 700101365 male   Nose     
#>  9 700100431 male   Nose     
#> 10 700016050 male   Nose     
#> # ... with 40 more rows

We can parse the taxonomic information in the abundance matrix using a parser from taxa:

obj <- parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",
                      class_key = c(tax_rank = "info", tax_name = "taxon_name"),
                      class_regex = "^(.+)__(.+)$")

This returns a taxmap object. The taxmap class is designed to store any number of tables, lists, or vectors associated with taxonomic information and facilitate manipulating the data in a cohesive way. Here is what that object looks like:

print(obj)
#> <Taxmap>
#>   174 taxa: ab. Root, ac. Proteobacteria ... gr. Blautia, gs. Clostridium
#>   174 edges: NA->ab, ab->ac, ab->ad, ab->ae ... cm->gq, cf->gr, cw->gs
#>   2 data sets:
#>     tax_data:
#>       # A tibble: 1,000 x 53
#>         taxon_id otu_id lineage `700035949` `700097855` `700100489` `700111314`
#>         <chr>    <chr>  <chr>         <int>       <int>       <int>       <int>
#>       1 dm       OTU_9… r__Roo…           0           2           1           0
#>       2 dn       OTU_9… r__Roo…           0           0           0           0
#>       3 do       OTU_9… r__Roo…           0           1           0           0
#>       # ... with 997 more rows, and 46 more variables: `700033744` <int>,
#>       #   `700109581` <int>, `700111044` <int>, `700101365` <int>,
#>       #   `700100431` <int>, `700016050` <int>, `700032425` <int>,
#>       #   `700024855` <int>, `700103488` <int>, `700096869` <int>,
#>       #   `700107379` <int>, `700096422` <int>, `700102417` <int>,
#>       #   `700114168` <int>, `700037540` <int>, `700106397` <int>,
#>       #   `700113498` <int>, `700033743` <int>, `700105205` <int>,
#>       #   `700024238` <int>, `700034183` <int>, `700038390` <int>,
#>       #   `700015973` <int>, `700038124` <int>, `700107206` <int>,
#>       #   `700037403` <int>, `700098429` <int>, `700101224` <int>,
#>       #   `700114615` <int>, `700024234` <int>, `700108596` <int>,
#>       #   `700101076` <int>, `700105882` <int>, `700016902` <int>,
#>       #   `700102242` <int>, `700038231` <int>, `700109394` <int>,
#>       #   `700102530` <int>, `700108229` <int>, `700099013` <int>,
#>       #   `700098680` <int>, `700106938` <int>, `700014916` <int>,
#>       #   `700095535` <int>, `700102367` <int>, `700101358` <int>
#>     class_data:
#>       # A tibble: 5,922 x 5
#>         taxon_id input_index tax_rank tax_name            regex_match          
#>         <chr>          <int> <chr>    <chr>               <chr>                
#>       1 ab                 1 r        Root                r__Root              
#>       2 ac                 1 p        Proteobacteria      p__Proteobacteria    
#>       3 aj                 1 c        Gammaproteobacteria c__Gammaproteobacter…
#>       # ... with 5,919 more rows
#>   0 functions:

Abundance matrix manipulations

Removing low-abundance counts

Low-abundance sequences might be the result of sequencing error, so typically we remove any counts/OTUs with less than some number of reads. Lets set all counts with less than 5 reads to zero:

obj$data$tax_data <- zero_low_counts(obj, "tax_data", min_count = 5)
#> No `cols` specified, so using all numeric columns:
#>    700035949, 700097855, 700100489 ... 700095535, 700102367, 700101358
#> Zeroing 4325 of 50000 counts less than 5.

There might now be some OTUs with no "real" reads. Lets check:

no_reads <- rowSums(obj$data$tax_data[, hmp_samples$sample_id]) == 0
sum(no_reads)
#> [1] 211

It appears that 211 of 1000 OTUs now have no reads. We can remove those OTUs and their associated taxa with filter_obs:

obj <- filter_obs(obj, "tax_data", ! no_reads, drop_taxa = TRUE)
print(obj)
#> <Taxmap>
#>   155 taxa: ab. Root, ac. Proteobacteria ... gs. Clostridium
#>   155 edges: NA->ab, ab->ac, ab->ad, ab->ae ... dk->gp, cm->gq, cw->gs
#>   2 data sets:
#>     tax_data:
#>       # A tibble: 789 x 51
#>         taxon_id `700035949` `700097855` `700100489` `700111314` `700033744`
#>         <chr>          <dbl>       <dbl>       <dbl>       <dbl>       <dbl>
#>       1 dm                0.          0.          0.          0.          0.
#>       2 dn                0.          0.          0.          0.          0.
#>       3 do                0.          0.          0.          0.          0.
#>       # ... with 786 more rows, and 45 more variables: `700109581` <dbl>,
#>       #   `700111044` <dbl>, `700101365` <dbl>, `700100431` <dbl>,
#>       #   `700016050` <dbl>, `700032425` <dbl>, `700024855` <dbl>,
#>       #   `700103488` <dbl>, `700096869` <dbl>, `700107379` <dbl>,
#>       #   `700096422` <dbl>, `700102417` <dbl>, `700114168` <dbl>,
#>       #   `700037540` <dbl>, `700106397` <dbl>, `700113498` <dbl>,
#>       #   `700033743` <dbl>, `700105205` <dbl>, `700024238` <dbl>,
#>       #   `700034183` <dbl>, `700038390` <dbl>, `700015973` <dbl>,
#>       #   `700038124` <dbl>, `700107206` <dbl>, `700037403` <dbl>,
#>       #   `700098429` <dbl>, `700101224` <dbl>, `700114615` <dbl>,
#>       #   `700024234` <dbl>, `700108596` <dbl>, `700101076` <dbl>,
#>       #   `700105882` <dbl>, `700016902` <dbl>, `700102242` <dbl>,
#>       #   `700038231` <dbl>, `700109394` <dbl>, `700102530` <dbl>,
#>       #   `700108229` <dbl>, `700099013` <dbl>, `700098680` <dbl>,
#>       #   `700106938` <dbl>, `700014916` <dbl>, `700095535` <dbl>,
#>       #   `700102367` <dbl>, `700101358` <dbl>
#>     class_data:
#>       # A tibble: 5,903 x 5
#>         taxon_id input_index tax_rank tax_name            regex_match          
#>         <chr>          <int> <chr>    <chr>               <chr>                
#>       1 ab                 1 r        Root                r__Root              
#>       2 ac                 1 p        Proteobacteria      p__Proteobacteria    
#>       3 aj                 1 c        Gammaproteobacteria c__Gammaproteobacter…
#>       # ... with 5,900 more rows
#>   0 functions:

Note how there are fewer taxa now, as well as fewer OTUs. This coordinated manipulation of taxonomic and abundance data is one of the main benefits of using the taxmap class.

Accounting for un-even sampling

These are raw counts, but people typically work with rarefied counts or proportions to avoid sampling depth biasing the results. The function rarefy_obs will return the rarefied counts for a table in a taxmap object, but lets use proportions for this demonstration:

obj$data$tax_data <- calc_obs_props(obj, "tax_data")
#> No `cols` specified, so using all numeric columns:
#>    700035949, 700097855, 700100489 ... 700095535, 700102367, 700101358
#> Calculating proportions from counts for 50 columns for 789 observations.
print(obj)
#> <Taxmap>
#>   155 taxa: ab. Root, ac. Proteobacteria ... gs. Clostridium
#>   155 edges: NA->ab, ab->ac, ab->ad, ab->ae ... dk->gp, cm->gq, cw->gs
#>   2 data sets:
#>     tax_data:
#>       # A tibble: 789 x 51
#>         taxon_id `700035949` `700097855` `700100489` `700111314` `700033744`
#>         <chr>          <dbl>       <dbl>       <dbl>       <dbl>       <dbl>
#>       1 dm                0.          0.          0.          0.          0.
#>       2 dn                0.          0.          0.          0.          0.
#>       3 do                0.          0.          0.          0.          0.
#>       # ... with 786 more rows, and 45 more variables: `700109581` <dbl>,
#>       #   `700111044` <dbl>, `700101365` <dbl>, `700100431` <dbl>,
#>       #   `700016050` <dbl>, `700032425` <dbl>, `700024855` <dbl>,
#>       #   `700103488` <dbl>, `700096869` <dbl>, `700107379` <dbl>,
#>       #   `700096422` <dbl>, `700102417` <dbl>, `700114168` <dbl>,
#>       #   `700037540` <dbl>, `700106397` <dbl>, `700113498` <dbl>,
#>       #   `700033743` <dbl>, `700105205` <dbl>, `700024238` <dbl>,
#>       #   `700034183` <dbl>, `700038390` <dbl>, `700015973` <dbl>,
#>       #   `700038124` <dbl>, `700107206` <dbl>, `700037403` <dbl>,
#>       #   `700098429` <dbl>, `700101224` <dbl>, `700114615` <dbl>,
#>       #   `700024234` <dbl>, `700108596` <dbl>, `700101076` <dbl>,
#>       #   `700105882` <dbl>, `700016902` <dbl>, `700102242` <dbl>,
#>       #   `700038231` <dbl>, `700109394` <dbl>, `700102530` <dbl>,
#>       #   `700108229` <dbl>, `700099013` <dbl>, `700098680` <dbl>,
#>       #   `700106938` <dbl>, `700014916` <dbl>, `700095535` <dbl>,
#>       #   `700102367` <dbl>, `700101358` <dbl>
#>     class_data:
#>       # A tibble: 5,903 x 5
#>         taxon_id input_index tax_rank tax_name            regex_match          
#>         <chr>          <int> <chr>    <chr>               <chr>                
#>       1 ab                 1 r        Root                r__Root              
#>       2 ac                 1 p        Proteobacteria      p__Proteobacteria    
#>       3 aj                 1 c        Gammaproteobacteria c__Gammaproteobacter…
#>       # ... with 5,900 more rows
#>   0 functions:

Getting per-taxon information

Currently, we have values for the abundance of each OTU, not each taxon. To get information on the taxa, we can sum the abundance per-taxon like so:

obj$data$tax_abund <- calc_taxon_abund(obj, "tax_data",
                                       cols = hmp_samples$sample_id)
#> Summing per-taxon counts from 50 columns for 155 taxa
print(obj)
#> <Taxmap>
#>   155 taxa: ab. Root, ac. Proteobacteria ... gs. Clostridium
#>   155 edges: NA->ab, ab->ac, ab->ad, ab->ae ... dk->gp, cm->gq, cw->gs
#>   3 data sets:
#>     tax_data:
#>       # A tibble: 789 x 51
#>         taxon_id `700035949` `700097855` `700100489` `700111314` `700033744`
#>         <chr>          <dbl>       <dbl>       <dbl>       <dbl>       <dbl>
#>       1 dm                0.          0.          0.          0.          0.
#>       2 dn                0.          0.          0.          0.          0.
#>       3 do                0.          0.          0.          0.          0.
#>       # ... with 786 more rows, and 45 more variables: `700109581` <dbl>,
#>       #   `700111044` <dbl>, `700101365` <dbl>, `700100431` <dbl>,
#>       #   `700016050` <dbl>, `700032425` <dbl>, `700024855` <dbl>,
#>       #   `700103488` <dbl>, `700096869` <dbl>, `700107379` <dbl>,
#>       #   `700096422` <dbl>, `700102417` <dbl>, `700114168` <dbl>,
#>       #   `700037540` <dbl>, `700106397` <dbl>, `700113498` <dbl>,
#>       #   `700033743` <dbl>, `700105205` <dbl>, `700024238` <dbl>,
#>       #   `700034183` <dbl>, `700038390` <dbl>, `700015973` <dbl>,
#>       #   `700038124` <dbl>, `700107206` <dbl>, `700037403` <dbl>,
#>       #   `700098429` <dbl>, `700101224` <dbl>, `700114615` <dbl>,
#>       #   `700024234` <dbl>, `700108596` <dbl>, `700101076` <dbl>,
#>       #   `700105882` <dbl>, `700016902` <dbl>, `700102242` <dbl>,
#>       #   `700038231` <dbl>, `700109394` <dbl>, `700102530` <dbl>,
#>       #   `700108229` <dbl>, `700099013` <dbl>, `700098680` <dbl>,
#>       #   `700106938` <dbl>, `700014916` <dbl>, `700095535` <dbl>,
#>       #   `700102367` <dbl>, `700101358` <dbl>
#>     class_data:
#>       # A tibble: 5,903 x 5
#>         taxon_id input_index tax_rank tax_name            regex_match          
#>         <chr>          <int> <chr>    <chr>               <chr>                
#>       1 ab                 1 r        Root                r__Root              
#>       2 ac                 1 p        Proteobacteria      p__Proteobacteria    
#>       3 aj                 1 c        Gammaproteobacteria c__Gammaproteobacter…
#>       # ... with 5,900 more rows
#>     tax_abund:
#>       # A tibble: 155 x 51
#>         taxon_id `700035949` `700097855` `700100489` `700111314` `700033744`
#>       * <chr>          <dbl>       <dbl>       <dbl>       <dbl>       <dbl>
#>       1 ab             1.00      1.00             1.      1.00         1.00 
#>       2 ac             0.206     0.0262           0.      0.252        0.225
#>       3 ad             0.        0.00269          0.      0.0417       0.   
#>       # ... with 152 more rows, and 45 more variables: `700109581` <dbl>,
#>       #   `700111044` <dbl>, `700101365` <dbl>, `700100431` <dbl>,
#>       #   `700016050` <dbl>, `700032425` <dbl>, `700024855` <dbl>,
#>       #   `700103488` <dbl>, `700096869` <dbl>, `700107379` <dbl>,
#>       #   `700096422` <dbl>, `700102417` <dbl>, `700114168` <dbl>,
#>       #   `700037540` <dbl>, `700106397` <dbl>, `700113498` <dbl>,
#>       #   `700033743` <dbl>, `700105205` <dbl>, `700024238` <dbl>,
#>       #   `700034183` <dbl>, `700038390` <dbl>, `700015973` <dbl>,
#>       #   `700038124` <dbl>, `700107206` <dbl>, `700037403` <dbl>,
#>       #   `700098429` <dbl>, `700101224` <dbl>, `700114615` <dbl>,
#>       #   `700024234` <dbl>, `700108596` <dbl>, `700101076` <dbl>,
#>       #   `700105882` <dbl>, `700016902` <dbl>, `700102242` <dbl>,
#>       #   `700038231` <dbl>, `700109394` <dbl>, `700102530` <dbl>,
#>       #   `700108229` <dbl>, `700099013` <dbl>, `700098680` <dbl>,
#>       #   `700106938` <dbl>, `700014916` <dbl>, `700095535` <dbl>,
#>       #   `700102367` <dbl>, `700101358` <dbl>
#>   0 functions:

Note that there is now an additional table with one row per taxon.

We can also easily calculate the number of samples have reads for each taxon:

obj$data$tax_occ <- calc_n_samples(obj, "tax_abund", groups = hmp_samples$body_site)
#> No `cols` specified, so using all numeric columns:
#>    700035949, 700097855, 700100489 ... 700095535, 700102367, 700101358
#> Calculating number of samples with non-zero counts from 50 columns in 5 groups for 155 observations
print(obj)
#> <Taxmap>
#>   155 taxa: ab. Root, ac. Proteobacteria ... gs. Clostridium
#>   155 edges: NA->ab, ab->ac, ab->ad, ab->ae ... dk->gp, cm->gq, cw->gs
#>   4 data sets:
#>     tax_data:
#>       # A tibble: 789 x 51
#>         taxon_id `700035949` `700097855` `700100489` `700111314` `700033744`
#>         <chr>          <dbl>       <dbl>       <dbl>       <dbl>       <dbl>
#>       1 dm                0.          0.          0.          0.          0.
#>       2 dn                0.          0.          0.          0.          0.
#>       3 do                0.          0.          0.          0.          0.
#>       # ... with 786 more rows, and 45 more variables: `700109581` <dbl>,
#>       #   `700111044` <dbl>, `700101365` <dbl>, `700100431` <dbl>,
#>       #   `700016050` <dbl>, `700032425` <dbl>, `700024855` <dbl>,
#>       #   `700103488` <dbl>, `700096869` <dbl>, `700107379` <dbl>,
#>       #   `700096422` <dbl>, `700102417` <dbl>, `700114168` <dbl>,
#>       #   `700037540` <dbl>, `700106397` <dbl>, `700113498` <dbl>,
#>       #   `700033743` <dbl>, `700105205` <dbl>, `700024238` <dbl>,
#>       #   `700034183` <dbl>, `700038390` <dbl>, `700015973` <dbl>,
#>       #   `700038124` <dbl>, `700107206` <dbl>, `700037403` <dbl>,
#>       #   `700098429` <dbl>, `700101224` <dbl>, `700114615` <dbl>,
#>       #   `700024234` <dbl>, `700108596` <dbl>, `700101076` <dbl>,
#>       #   `700105882` <dbl>, `700016902` <dbl>, `700102242` <dbl>,
#>       #   `700038231` <dbl>, `700109394` <dbl>, `700102530` <dbl>,
#>       #   `700108229` <dbl>, `700099013` <dbl>, `700098680` <dbl>,
#>       #   `700106938` <dbl>, `700014916` <dbl>, `700095535` <dbl>,
#>       #   `700102367` <dbl>, `700101358` <dbl>
#>     class_data:
#>       # A tibble: 5,903 x 5
#>         taxon_id input_index tax_rank tax_name            regex_match          
#>         <chr>          <int> <chr>    <chr>               <chr>                
#>       1 ab                 1 r        Root                r__Root              
#>       2 ac                 1 p        Proteobacteria      p__Proteobacteria    
#>       3 aj                 1 c        Gammaproteobacteria c__Gammaproteobacter…
#>       # ... with 5,900 more rows
#>     tax_abund:
#>       # A tibble: 155 x 51
#>         taxon_id `700035949` `700097855` `700100489` `700111314` `700033744`
#>       * <chr>          <dbl>       <dbl>       <dbl>       <dbl>       <dbl>
#>       1 ab             1.00      1.00             1.      1.00         1.00 
#>       2 ac             0.206     0.0262           0.      0.252        0.225
#>       3 ad             0.        0.00269          0.      0.0417       0.   
#>       # ... with 152 more rows, and 45 more variables: `700109581` <dbl>,
#>       #   `700111044` <dbl>, `700101365` <dbl>, `700100431` <dbl>,
#>       #   `700016050` <dbl>, `700032425` <dbl>, `700024855` <dbl>,
#>       #   `700103488` <dbl>, `700096869` <dbl>, `700107379` <dbl>,
#>       #   `700096422` <dbl>, `700102417` <dbl>, `700114168` <dbl>,
#>       #   `700037540` <dbl>, `700106397` <dbl>, `700113498` <dbl>,
#>       #   `700033743` <dbl>, `700105205` <dbl>, `700024238` <dbl>,
#>       #   `700034183` <dbl>, `700038390` <dbl>, `700015973` <dbl>,
#>       #   `700038124` <dbl>, `700107206` <dbl>, `700037403` <dbl>,
#>       #   `700098429` <dbl>, `700101224` <dbl>, `700114615` <dbl>,
#>       #   `700024234` <dbl>, `700108596` <dbl>, `700101076` <dbl>,
#>       #   `700105882` <dbl>, `700016902` <dbl>, `700102242` <dbl>,
#>       #   `700038231` <dbl>, `700109394` <dbl>, `700102530` <dbl>,
#>       #   `700108229` <dbl>, `700099013` <dbl>, `700098680` <dbl>,
#>       #   `700106938` <dbl>, `700014916` <dbl>, `700095535` <dbl>,
#>       #   `700102367` <dbl>, `700101358` <dbl>
#>     tax_occ:
#>       # A tibble: 155 x 6
#>         taxon_id  Nose Saliva  Skin Stool Throat
#>         <chr>    <int>  <int> <int> <int>  <int>
#>       1 ab          10     10    10    10     10
#>       2 ac           8     10     9     2     10
#>       3 ad           5     10     8    10     10
#>       # ... with 152 more rows
#>   0 functions:

Plotting taxonomic data

Now that we have per-taxon information, we can plot the information using heat trees. The code below plots the number of "Nose" samples that have reads for each taxon. It also plots the number of OTUs assigned to each taxon in the overall dataset.

heat_tree(obj, 
          node_label = taxon_names,
          node_size = n_obs,
          node_color = Nose, 
          node_size_axis_label = "OTU count",
          node_color_axis_label = "Samples with reads")

Note how we did not have to specify the full path to the variable "Nose", but just its name. This is a shorthand for convenience. We could have made the same plot using this command:

heat_tree(obj, 
          node_label = obj$taxon_names(),
          node_size = obj$n_obs(),
          node_color = obj$data$tax_occ$Nose, 
          node_size_axis_label = "OTU count",
          node_color_axis_label = "Samples with reads")

Comparing two treatments/groups

Usually we are interested in how groups of samples compare. For example, we might want to know which taxa differ between the nose and throat, or between men and women. The function compare_groups facilitates these comparisons:

obj$data$diff_table <- compare_groups(obj, dataset = "tax_abund",
                                      cols = hmp_samples$sample_id,
                                      groups = hmp_samples$sex)
print(obj$data$diff_table)
#> # A tibble: 155 x 7
#>    taxon_id treatment_1 treatment_2 log2_median_rat… median_diff mean_diff wilcox_p_value
#>    <chr>    <chr>       <chr>                  <dbl>       <dbl>     <dbl>          <dbl>
#>  1 ab       female      male                   0.         0.       0.             NaN    
#>  2 ac       female      male                   0.380      0.0229   0.0379           0.470
#>  3 ad       female      male                  -0.434     -0.0449  -0.0199           0.907
#>  4 ae       female      male                  -1.68      -0.0475  -0.0753           0.335
#>  5 af       female      male                   0.649      0.116    0.0614           0.386
#>  6 ag       female      male                   0.         0.      -0.00275          0.732
#>  7 ah       female      male                   0.         0.      -0.00140          0.602
#>  8 aj       female      male                   1.24       0.0162  -0.0129           0.680
#>  9 ak       female      male                   0.         0.       0.00121          0.416
#> 10 al       female      male                  -0.542     -0.0541  -0.0211           0.969
#> # ... with 145 more rows

We can use this information to create what we call a "differential heat tree", which indicates which taxa are more abundant in each treatment:

heat_tree(obj, 
          node_label = taxon_names,
          node_size = n_obs,
          node_color = log2_median_ratio, 
          node_color_interval = c(-2, 2),
          edge_color_interval = c(-2, 2),
          node_color_range = c("cyan", "gray", "tan"),
          node_size_axis_label = "OTU count",
          node_color_axis_label = "Log 2 ratio of median proportions")

In this case, taxa colored tan are more abundant in women and those colored blue are more abundant in men. Note that we have not taken into account statistics significance when showing this, so lets do that. First, we need to correct for multiple comparisons:

obj$data$diff_table$wilcox_p_value <- p.adjust(obj$data$diff_table$wilcox_p_value,
                                               method = "fdr")

If we then look at the distribution of p-values, we can see that none are even close to significant:

hist(obj$data$diff_table$wilcox_p_value) 

There is no need to graph this, but if there still were some significant differences, we could set any difference that is not significant to zero and repeat the last heat_tree command.

Comparing any number of treatments/groups

A single differential heat tree can compare two treatments, but what if you have more? Then we can make a matrix of heat trees, one for each pairwise comparison of treatments like so:

obj$data$diff_table <- compare_groups(obj, dataset = "tax_abund",
                                      cols = hmp_samples$sample_id,
                                      groups = hmp_samples$body_site)
print(obj$data$diff_table)
#> # A tibble: 1,550 x 7
#>    taxon_id treatment_1 treatment_2 log2_median_rat… median_diff mean_diff wilcox_p_value
#>    <chr>    <chr>       <chr>                  <dbl>       <dbl>     <dbl>          <dbl>
#>  1 ab       Nose        Saliva                  0.        0.        0.        NaN        
#>  2 ac       Nose        Saliva                 -2.62     -0.167    -0.128       0.0172   
#>  3 ad       Nose        Saliva                 -7.68     -0.274    -0.265       0.000163 
#>  4 ae       Nose        Saliva                  5.36      0.616     0.595       0.0000108
#>  5 af       Nose        Saliva                 -1.23     -0.260    -0.159       0.0433   
#>  6 ag       Nose        Saliva               -Inf        -0.0228   -0.0436      0.0000874
#>  7 ah       Nose        Saliva                  0.        0.        0.        NaN        
#>  8 aj       Nose        Saliva                 -3.83     -0.103    -0.0803      0.00707  
#>  9 ak       Nose        Saliva               -Inf        -0.0174   -0.0174      0.00156  
#> 10 al       Nose        Saliva               -Inf        -0.258    -0.248       0.000149 
#> # ... with 1,540 more rows

There is a special function to plot this type of data called heat_tree_matrix:

heat_tree_matrix(obj,
                 dataset = "diff_table",
                 node_size = n_obs,
                 node_label = taxon_names,
                 node_color = log2_median_ratio,
                 node_color_range = diverging_palette(),
                 node_color_trans = "linear",
                 node_color_interval = c(-3, 3),
                 edge_color_interval = c(-3, 3),
                 node_size_axis_label = "Number of OTUs",
                 node_color_axis_label = "Log2 ratio median proportions")

More information

This document is only a short introduction to metacoder and there is much that is not covered. For more information, see our website at http://grunwaldlab.github.io/metacoder_documentation/ and our github repository at https://github.com/grunwaldlab/metacoder. There is also extensive help and examples in the function documentation that can be accessed by, for example, ?heat_tree.

Feedback

We welcome any kind of feedback! Let us know if you run into problems by submitting an issue on our Github repo: https://github.com/grunwaldlab/metacoder

Dependencies

The function that runs in silico PCR requires primersearch from the EMBOSS tool kit to be installed. This is not an R package, so it is not automatically installed. Type ?primersearch after installing and loading metacoder for installation instructions.

Citation

If you use metcoder in a publication, please cite our article in PLOS Computational Biology:

Foster ZSL, Sharpton TJ, Grünwald NJ (2017) Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLOS Computational Biology 13(2): e1005404. https://doi.org/10.1371/journal.pcbi.1005404

License

This work is subject to the MIT License.

Acknowledgements

This package includes code from the R package ggrepel to handle label overlap avoidance with permission from the author of ggrepel Kamil Slowikowski. We included the code instead of depending on ggrepel because we are using functions internal to ggrepel that might change in the future. We thank Kamil Slowikowski for letting us use his code and would like to acknowledge his implementation of the label overlap avoidance used in metacoder.

Copy Link

Version

Install

install.packages('metacoder')

Monthly Downloads

1,065

Version

0.2.1

License

GPL-2 | GPL-3

Maintainer

Zachary Foster

Last Published

May 2nd, 2018

Functions in metacoder (0.2.1)

fasta_headers

Get line numbers of FASTA headers
filter_ambiguous_taxa

Filter ambiguous taxon names
do_calc_on_num_cols

Run some function to produce new columns.
inverse

Generate the inverse of a function
get_numerics

Return numeric values in a character
%>%

magrittr forward-pipe operator
heat_tree_matrix

Plot a matrix of heat trees
hmp_samples

Sample information for HMP subset
heat_tree

Plot a taxonomic tree
inter_circle_gap

Finds the gap/overlap of circle coordinates
get_numeric_cols

Get numeric columns from taxmap table
contains

dplyr select_helpers
get_edge_parents

get_edge_parents
edge_list_depth

Get distance from root of edgelist observations
get_node_children

get_node_children
map_unique

Run a function on unique values of a iterable
get_optimal_range

Find optimal range
is_ambiguous

Find ambiguous taxon names
get_taxmap_cols

Get a column subset
ends_with

dplyr select_helpers
hmp_otus

A HMP subset
my_print

Print something
get_class_from_el

Get classification for taxa in edge list
parse_newick

Parse a Newick file
matches

dplyr select_helpers
get_edge_children

get_edge_children
parse_phylo

Parse a phylo object
everything

dplyr select_helpers
read_fasta

Read a FASTA file
parse_unite_general

Parse UNITE general release FASTA
get_taxmap_data

Get a data set from a taxmap object
get_taxmap_table

Get a table from a taxmap object
parse_summary_seqs

Parse summary.seqs output
limited_print

Print a subset of a character vector
read_lines_apply

Apply a function to chunks of a file
ncbi_sequence

Downloads sequences from ids
get_taxonomy_levels

Get taxonomy levels
get_taxmap_other_cols

Parse the other_cols option
line_coords

Makes coordinates for a line
metacoder

Metacoder
ncbi_taxon_sample

Download representative sequences for a taxon
starts_with

dplyr select_helpers
parse_phyloseq

Convert a phyloseq to taxmap
num_range

dplyr select_helpers
startup_msg

Return startup message
qualitative_palette

The default qualitative color palette
label_bounds

Bounding box coords for labels
layout_functions

Layout functions
parse_primersearch

Parse EMBOSS primersearch output
parse_qiime_biom

Parse a BIOM output from QIIME
zero_low_counts

Replace low counts with zero
make_plot_legend

Make color/size legend
molten_dist

Get all distances between points
one_of

dplyr select_helpers
look_for_na

Look for NAs in parameters
parse_rdp

Parse RDP FASTA release
parse_greengenes

Parse Greengenes release
parse_mothur_tax_summary

Parse mothur *.tax.summary Classify.seqs output
primersearch_is_installed

Test if primersearch is installed
rev_comp

Revere complement sequences
parse_seq_input

Read sequences in an unknown format
parse_mothur_taxonomy

Parse mothur Classify.seqs *.taxonomy output
parse_silva_fasta

Parse SILVA FASTA release
reverse

Reverse sequences
quantative_palette

The default quantative color palette
select_labels

Pick labels to show
text_grob_length

Estimate text grob length
rarefy_obs

Calculate rarefied observation counts
primersearch

Use EMBOSS primersearch for in silico PCR
run_primersearch

Execute EMBOSS Primersearch
scale_bar_coords

Make scale bar division
polygon_coords

Makes coordinates for a regular polygon
split_by_level

Splits a taxonomy at a specific level or rank
verify_size_range

Verify size range parameters
repo_url

Return github url
verify_label_count

Verify label count
verify_size

Verify size parameters
verify_trans

Verify transformation function parameters
verify_taxmap

Check that an object is a taxmap
write_greengenes

Write an imitation of the Greengenes databse
write_silva_fasta

Write an imitation of the SILVA FASTA databse
unique_mapping

get indexes of a unique set of the input
verify_color_range

Verify color range parameters
transform_data

Transformation functions
write_unite_general

Write an imitation of the UNITE general FASTA databse
write_rdp

Write an imitation of the RDP FASTA databse
write_mothur_taxonomy

Write an imitation of the Mothur taxonomy file
rescale

Rescale numeric vector to have specified minimum and maximum.
calc_group_median

Calculate medians of groups of columns
calc_group_mean

Calculate means of groups of columns
check_option_groups

Check option: groups
compare_groups

Compare groups of samples
calc_group_rsd

Relative standard deviations of groups of columns
calc_group_stat

Apply a function to groups of columns
diverging_palette

The default diverging color palette
convert_base

Converts decimal numbers to other bases
calc_n_samples

Count the number of samples
DNAbin_to_char

Converts DNAbin to a named character vector
calc_obs_props

Calculate proportions from observation counts
ambiguous_patterns

Get patterns for ambiguous taxa
complement

Find complement of sequences
calc_taxon_abund

Sum observation values for each taxon
add_alpha

add_alpha
can_be_num

Test if characters can be converted to numbers
apply_color_scale

Covert numbers to colors
check_element_length

Check length of graph attributes
check_for_pkg

check for packages