Learn R Programming

⚠️There's a newer version (1.18.5) of this package.Take me there.

pROC

An R package to display and analyze ROC curves.

For more information, see:

  1. Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: 10.1186/1471-2105-12-77
  2. The official web page on ExPaSy
  3. The CRAN page
  4. My blog
  5. The FAQ

Stable

The latest stable version is best installed from the CRAN:

install.packages("pROC")

Getting started

If you don't want to read the manual first, try the following:

Loading

library(pROC)
data(aSAH)

Basic ROC / AUC analysis

roc(aSAH$outcome, aSAH$s100b)
roc(outcome ~ s100b, aSAH)

Smoothing

roc(outcome ~ s100b, aSAH, smooth=TRUE) 

more options, CI and plotting

roc1 <- roc(aSAH$outcome,
            aSAH$s100b, percent=TRUE,
            # arguments for auc
            partial.auc=c(100, 90), partial.auc.correct=TRUE,
            partial.auc.focus="sens",
            # arguments for ci
            ci=TRUE, boot.n=100, ci.alpha=0.9, stratified=FALSE,
            # arguments for plot
            plot=TRUE, auc.polygon=TRUE, max.auc.polygon=TRUE, grid=TRUE,
            print.auc=TRUE, show.thres=TRUE)

    # Add to an existing plot. Beware of 'percent' specification!
    roc2 <- roc(aSAH$outcome, aSAH$wfns,
            plot=TRUE, add=TRUE, percent=roc1$percent)        

Coordinates of the curve

coords(roc1, "best", ret=c("threshold", "specificity", "1-npv"))
coords(roc2, "local maximas", ret=c("threshold", "sens", "spec", "ppv", "npv"))

Confidence intervals

# Of the AUC
ci(roc2)

# Of the curve
sens.ci <- ci.se(roc1, specificities=seq(0, 100, 5))
plot(sens.ci, type="shape", col="lightblue")
plot(sens.ci, type="bars")

# need to re-add roc2 over the shape
plot(roc2, add=TRUE)

# CI of thresholds
plot(ci.thresholds(roc2))

Comparisons

    # Test on the whole AUC
    roc.test(roc1, roc2, reuse.auc=FALSE)

    # Test on a portion of the whole AUC
    roc.test(roc1, roc2, reuse.auc=FALSE, partial.auc=c(100, 90),
             partial.auc.focus="se", partial.auc.correct=TRUE)

    # With modified bootstrap parameters
    roc.test(roc1, roc2, reuse.auc=FALSE, partial.auc=c(100, 90),
             partial.auc.correct=TRUE, boot.n=1000, boot.stratified=FALSE)

Sample size

    # Two ROC curves
    power.roc.test(roc1, roc2, reuse.auc=FALSE)
    power.roc.test(roc1, roc2, power=0.9, reuse.auc=FALSE)

    # One ROC curve
    power.roc.test(auc=0.8, ncases=41, ncontrols=72)
    power.roc.test(auc=0.8, power=0.9)
    power.roc.test(auc=0.8, ncases=41, ncontrols=72, sig.level=0.01)
    power.roc.test(ncases=41, ncontrols=72, power=0.9)

Getting Help

If you still can't find an answer, you can:

Development

Installing the development version

Download the source code from git, unzip it if necessary, and then type R CMD INSTALL pROC. Alternatively, you can use the devtools package by Hadley Wickham to automate the process (make sure you follow the full instructions to get started):

if (! requireNamespace("devtools")) install.packages("devtools")
devtools::install_github("xrobin/pROC@develop")

Check

To run all automated tests and R checks, including slow tests:

cd .. # Run from parent directory
VERSION=$(grep Version pROC/DESCRIPTION | sed "s/.\+ //")
R CMD build pROC
RUN_SLOW_TESTS=true R CMD check pROC_$VERSION.tar.gz

Or from an R command prompt with devtools:

devtools::check()

Tests

To run automated tests only from an R command prompt:

run_slow_tests <- TRUE  # Optional, include slow tests
devtools::test()

vdiffr

The vdiffr package is used for visual tests of plots.

To run all the test cases (incl. slow ones) from the command line:

run_slow_tests <- TRUE
devtools::test() # Must run the new tests
testthat::snapshot_review()

To run the checks upon R CMD check, set environment variable NOT_CRAN=1:

NOT_CRAN=1 RUN_SLOW_TESTS=true R CMD check pROC_$VERSION.tar.gz

Release steps

  1. Update Version and Date in DESCRIPTION
  2. Update version and date in NEWS
  3. Get new version to release: VERSION=$(grep Version pROC/DESCRIPTION | sed "s/.\+ //") && echo $VERSION
  4. Build & check package: R CMD build pROC && R CMD check --as-cran pROC_$VERSION.tar.gz
  5. Check with slow tests: NOT_CRAN=1 RUN_SLOW_TESTS=true R CMD check pROC_$VERSION.tar.gz
  6. Check with R-devel: rhub::check_for_cran()
  7. Check reverse dependencies: revdepcheck::revdep_check(num_workers=8, timeout = as.difftime(60, units = "mins"))
  8. Merge into master: git checkout master && git merge develop
  9. Create a tag on master: git tag v$VERSION && git push --tags
  10. Submit to CRAN

Copy Link

Version

Install

install.packages('pROC')

Monthly Downloads

163,375

Version

1.18.4

License

GPL (>= 3)

Maintainer

Xavier Robin

Last Published

July 6th, 2023

Functions in pROC (1.18.4)

ggroc.roc

Plot a ROC curve with ggplot2
multiclass.roc

Multi-class AUC
coords_transpose

Transposing the output of coords
groupGeneric

pROC Group Generic Functions
plot.roc

Plot a ROC curve
plot.ci

Plot confidence intervals
pROC-package

pROC
has.partial.auc

Does the ROC curve have a partial AUC?
cov.roc

Covariance of two paired ROC curves
lines.roc

Add a ROC line to a ROC plot
print

Print a ROC curve object
roc

Build a ROC curve
roc.test

Compare two ROC curves
smooth

Smooth a ROC curve
var.roc

Variance of a ROC curve
power.roc.test

Sample size and power computation for ROC curves
coords

Coordinates of a ROC curve
auc

Compute the area under the ROC curve
ci.thresholds

Compute the confidence interval of thresholds
ci.se

Compute the confidence interval of sensitivities at given specificities
ci.sp

Compute the confidence interval of specificities at given sensitivities
ci

Compute the confidence interval of a ROC curve
ci.auc

Compute the confidence interval of the AUC
ci.coords

Compute the confidence interval of arbitrary coordinates
aSAH

Subarachnoid hemorrhage data
are.paired

Are two ROC curves paired?