Learn R Programming

⚠️There's a newer version (1.12.4) of this package.Take me there.

pRoloc (version 1.12.3)

A unifying bioinformatics framework for spatial proteomics

Description

This package implements pattern recognition techniques on quantitiative mass spectrometry data to infer protein sub-cellular localisation.

Copy Link

Version

Version

1.12.3

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Laurent Gatto

Last Published

February 15th, 2017

Functions in pRoloc (1.12.3)

empPvalues

Estimate empirical p-values for $Chi^2$ protein correlations.
addLegend

Adds a legend
GenRegRes-class

Class "GenRegRes" and "ThetaRegRes"
filterMinMarkers

Removes class/annotation information from a matrix of candidate markers that appear in the fData.
ClustDistList-class

Storing multiple ClustDist instances
pRolocmarkers

Organelle markers
knntlOptimisation

theta parameter optimisation
checkFvarOverlap

Compare a feature variable overlap
ClustDist-class

Class "ClustDist"
filterBinMSnSet

Filter a binary MSnSet
addGoAnnotations

Add GO annotations
highlightOnPlot

Highlight features of interest on a plot2D figure
filterMaxMarkers

Removes class/annotation information from a matrix of candidate markers that appear in the fData.
SpatProtVis-class

Class SpatProtVis
markerMSnSet

Extract marker/unknown subsets
AnnotationParams-class

Class "AnnotationParams"
filterZeroCols

Remove 0 columns/rows
plsdaOptimisation

plsda parameter optimisation
chi2-methods

The PCP 'chi square' method
exprsToRatios-methods

Calculate all ratio pairs
fDataToUnknown

Update a feature variable
setLisacol

Manage default colours and point characters
Deprecated

pRoloc Deprecated and Defunct
getGOFromFeatures

Retrieve GO terms for feature names
undocumented

Undocumented/unexported entries
classWeights

Calculate class weights
lopims

A complete LOPIMS pipeline
plot2Ds

Draw 2 data sets on one PCA plot
getMarkers

Get the organelle markers in an MSnSet
goIdToTerm

Convert GO ids to/from terms
ksvmOptimisation

ksvm parameter optimisation
getNormDist

Extract Distances from a "ClustDistList" object
ksvmClassification

ksvm classification
move2Ds

Displays a spatial proteomics animation
svmOptimisation

svm parameter optimisation
minMarkers

Creates a reduced marker variable
nnetOptimisation

nnet parameter optimisation
nbClassification

nb classification
rfClassification

rf classification
knnClassification

knn classification
testMarkers

Tests marker class sizes
plotDist

Plots the distribution of features across fractions
perTurboOptimisation

PerTurbo parameter optimisation
orgQuants

Returns organelle-specific quantile scores
subsetMarkers

Subsets markers
knntlClassification

knn transfer learning classification
pRolocVis

Interactive visualisation of spatial proteomics data
svmClassification

svm classification
rfOptimisation

svm parameter optimisation
showGOEvidenceCodes

GO Evidence Codes
pRoloc-package

pRoloc
MLearn-methods

The MLearn interface for machine learning
clustDist

Pairwise Distance Computation for Protein Information Sets
getMarkerClasses

Returns the organelle classes in an 'MSnSet'
plsdaClassification

plsda classification
plot2D

Plot organelle assignment data and results.
sampleMSnSet

Extract a stratified sample of an MSnSet
addMarkers

Adds markers to the data
nbOptimisation

nb paramter optimisation
checkFeatureNamesOverlap

Check feature names overlap
nnetClassification

nnet classification
MartInstance-class

Class "MartInstance"
nndist-methods

Nearest neighbour distances
testMSnSet

Create a stratified 'test' MSnSet
orderGoAnnotations

Orders annotation information
perTurboClassification

perTurbo classification
phenoDisco

Runs the phenoDisco algorithm.
mrkVecToMat

Create a marker vector or matrix.
makeGoSet

Creates a GO feature MSnSet
thetas

Draw matrix of thetas to test
getPredictions

Returns the predictions in an 'MSnSet'
knnOptimisation

knn parameter optimisation