Learn R Programming

stringgaussnet (version 1.1)

MultiNetworks.default: Function to create an object of class MultiNetworks

Description

This function allows to create an object of class MultiNetworks from an object of class MultiDEGeneExpr. This is a wrapper of all methods available in the stringgaussnet package.

Usage

## S3 method for class 'default':
MultiNetworks(x, Methods = c("STRING", "SIMoNe", "WGCNA"), STRINGOptions = NULL,
	SIMoNeOptions = NULL, WGCNAOptions = NULL, SelectInteractionsSTRING = NULL,
	STRINGThreshold = 0, FilterShortPathOptions = NULL, FilterSIMoNeOptions = NULL,
	Factors = NULL, ...)

Arguments

x
An object of class MultiDEGeneExpr
Methods
A character vector indicating which network construction methods to use, among "STRING", "SIMoNe" and "WGCNA"
STRINGOptions
List with parameters available in the function getSTRINGNet()
SIMoNeOptions
List with parameters available in the function getSIMoNeNet()
WGCNAOptions
List with parameters available in the function getWGCNANet()
SelectInteractionsSTRING
A character vector indicating which interaction sources to select in STRINGNet. Please see selectInteractionTypes() for more details.
STRINGThreshold
Confidence score threshold for edge filtering in STRINGNet
FilterShortPathOptions
List with parameters available in the function FilterEdges.ShortPathSTRINGNet()
FilterSIMoNeOptions
List with parameters available in the function FIlterEdges.SIMoNeNet()
Factors
A vector of factors attributed to samples. Must gather all samples present in x.
...
Additional parameters. Not used here.

Value

  • An object of class MultiNetworks, which is a list of different network objects. If STRING method is used, shortest paths between initial nodes are computed.

See Also

MultiNetworks, print.MultiNetworks, MultiDEGeneExpr.default

Examples

Run this code
# data(SpADataExpression)
# data(SpADEGenes)
# data(SpASamples)
# SpAData<-DEGeneExpr(t(SpADataExpression),SpADEGenes)

# StatusFactor<-paste(SpASamples$status,SpASamples$b27,sep=".")
# names(StatusFactor)=SpASamples$chipnum

# NodesForSIMoNe<-rownames(SpADEGenes)[1:17]
# GaussianSpAData<-DEGeneExpr(t(SpADataExpression[NodesForSIMoNe,]),SpADEGenes[NodesForSIMoNe,])

# MultiSpAData<-MultiDEGeneExpr(GaussianSpAData,DEGeneExpr(t(SpADataExpression[18:34,]),
#	SpADEGenes[18:34,]),DEGeneExpr(t(SpADataExpression[35:51,]),SpADEGenes[35:51,]))
# MultiSpANetworks<-MultiNetworks(MultiSpAData,
#	SelectInteractionsSTRING=c("coexpression","experimental","knowledge"),STRINGThreshold=0.9,
#	FilterSIMoNeOptions=list(Threshold=0.4),Factors=StatusFactor,
#	STRINGOptions=list(AddAnnotations=FALSE),SIMoNeOptions=list(AddAnnotations=FALSE),
#	WGCNAOptions=list(AddAnnotations=FALSE))

Run the code above in your browser using DataLab