Learn R Programming

stringgaussnet (version 1.1)

getSIMoNeNet: Infer SIMoNe network from expression data

Description

This function infers a SIMoNe network from expression data. This gives a non-supervised gaussian network with partial correlation computations.

Usage

getSIMoNeNet(DEGeneExpr, NEdges = NA, ClusterMethod = "both", AddAnnotations = F,
	MartDataset = "hsapiens_gene_ensembl")

Arguments

DEGeneExpr
Object of class DEGeneExpr
NEdges
Criter selection of SIMoNe model. Can be the number of edges, 'BIC' or 'AIC'. If it is set to NA, the function chooses the number of edges by computing the mean between those with maximal AIC and BIC scores.
ClusterMethod
Can be TRUE, FALSE, or 'both'. If it is set to 'both', the function computes networks with and without clustering constraints, and pick common edges between the both.
AddAnnotations
Boolean variable indicating whether gene annotations must be added through biomaRt
MartDataset
Which mart dataset to use for querying gene annotations through biomaRt. See getMartDatasets() for some help.

Value

  • An object of class SIMoNeNet. See SIMoNeNet.default() for more details.

References

Chiquet, J. et al. SIMoNe Statistical Inference for MOdular NEtworks. Bioinforma. Oxf. Engl. 25, 417 (2009).

See Also

SIMoNeNet, SIMoNeNet.default, print.SIMoNeNet, summary.SIMoNeNet, export.SIMoNeNet, FilterEdges.SIMoNeNet, pickSIMoNeParam

Examples

Run this code
# data(SpADataExpression)
# data(SpADEGenes)
# SpAData<-DEGeneExpr(t(SpADataExpression),SpADEGenes)

# NodesForSIMoNe<-rownames(SpADEGenes)[1:17]
# GaussianSpAData<-DEGeneExpr(t(SpADataExpression[NodesForSIMoNe,]),SpADEGenes[NodesForSIMoNe,])

# pickSIMoNeParam(GaussianSpAData)

# GlobalSIMoNeNet<-getSIMoNeNet(GaussianSpAData)
# GlobalSIMoNeNet<-FilterEdges(GlobalSIMoNeNet,0.4)
# print(GlobalSIMoNeNet,5)
# summary(GlobalSIMoNeNet)
# plot(GlobalSIMoNeNet)

# export(GlobalSIMoNeNet,"GlobalSIMoNeNet",T)

Run the code above in your browser using DataLab