Learn R Programming

riemtan (version 0.2.5)

Riemannian Metrics for Symmetric Positive Definite Matrices

Description

Implements various Riemannian metrics for symmetric positive definite matrices, including AIRM (Affine Invariant Riemannian Metric, ), Log-Euclidean (), Euclidean, Log-Cholesky (), and Bures-Wasserstein metrics (). Provides functions for computing logarithmic and exponential maps, vectorization, and statistical operations on the manifold of positive definite matrices.

Copy Link

Version

Install

install.packages('riemtan')

Monthly Downloads

279

Version

0.2.5

License

MIT + file LICENSE

Maintainer

Nicolas Escobar

Last Published

November 10th, 2025

Functions in riemtan (0.2.5)

airm_unvec

Compute the Inverse Vectorization (AIRM)
airm_exp

Compute the AIRM Exponential
ListBackend

ListBackend Class
DataBackend

DataBackend Abstract Class
CSample

CSample Class
CSuperSample

CSuperSample Class
airm_vec

Compute the AIRM Vectorization of Tangent Space
airm_log

Compute the AIRM Logarithm
ParquetBackend

ParquetBackend Class
TangentImageHandler

TangentImageHandler Class
bures_wasserstein_log

Compute the Bures-Wasserstein Logarithm
bures_wasserstein_exp

Compute the Bures-Wasserstein Exponential
compute_frechet_mean

Compute the Frechet Mean
configure_progress

Configure Progress Handlers
create_progressor

Create a Progress Reporter for Iterative Operations
create_parquet_backend

Create ParquetBackend from Directory
is_progress_available

Check if Progress Reporting is Available
euclidean_unvec

Compute the Inverse Vectorization (Euclidean)
euclidean_log

Compute the Euclidean Logarithm
is_parallel_enabled

Check if Parallel Processing is Enabled
dlog

Differential of Matrix Logarithm Map
default_ref_pt

Default reference point
euclidean_exp

Compute the Euclidean Exponential
dexp

Differential of Matrix Exponential Map
id_matr

Create an Identity Matrix
half_underscore

Half-underscore operation for use in the log-Cholesky metric
log_cholesky_unvec

Compute the Log-Cholesky Inverse Vectorization
log_cholesky_vec

Compute the Log-Cholesky Vectorization
log_euclidean_unvec

Compute the Inverse Vectorization (Euclidean)
log_euclidean_vec

Vectorize at Identity Matrix (Euclidean)
euclidean_vec

Vectorize at Identity Matrix (Euclidean)
bures_wasserstein_vec

Compute the Bures-Wasserstein Vectorization
bures_wasserstein_unvec

Compute the Bures-Wasserstein Inverse Vectorization
relocate

Relocate Tangent Representations to a New Reference Point
reset_parallel_plan

Reset Parallel Plan to Sequential
validate_log_args

Validate arguments for Riemannian logarithms
log_cholesky_exp

Compute the Log-Cholesky Exponential
log_cholesky_log

Compute the Log-Cholesky Logarithm
validate_metric

Validate Metric
spd_isometry_from_identity

Reverse isometry from tangent space at identity to tangent space at P
should_parallelize

Decide Whether to Use Parallel Processing
metric

Metric Object Constructor
metrics

Pre-configured Riemannian metrics for SPD matrices
progress_utils

Progress Reporting Utilities for riemtan
validate_tan_imgs

Validate Tangent Images
validate_unvec_args

Validate arguments for inverse vectorization
parallel_config

Parallel Processing Configuration for riemtan
write_connectomes_to_parquet

Write Connectomes to Parquet Files
with_progress_signal

Execute Function with Progress Reporting for Each Item
set_parallel_plan

Set Parallel Processing Plan
safe_logm

Wrapper for the matrix logarithm
vec_at_id

Vectorize at Identity Matrix
validate_vec_args

Validate arguments for vectorization
validate_conns

Validate Connections
validate_vec_imgs

Validate Vector Images
validate_exp_args

Validate arguments for Riemannian logarithms
validate_parquet_dir

Validate Parquet Directory Structure
validate_parquet_directory

Validate Parquet Directory
with_progress

Execute Expression with Progress Reporting
log_euclidean_exp

Compute the Log-Euclidean Exponential
get_n_workers

Get Current Number of Parallel Workers
validate_backend

Validate Backend Object
spd_isometry_to_identity

Isometry from tangent space at P to tangent space at identity
riemtan-package

riemtan: Riemannian Metrics for Symmetric Positive Definite Matrices
log_euclidean_log

Compute the Log-Euclidean Logarithm
rspdnorm

Generate Random Samples from a Riemannian Normal Distribution