## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation 
##   for population pharmacokinetics-pharmacodynamics studies", 
##   Br. J. Clin. Pharm., 2014. 
library(PopED)
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL
## -- parameter definition function 
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
  parameters=c(CL=bpop[1]*exp(b[1]),
               V=bpop[2]*exp(b[2]),
               KA=bpop[3]*exp(b[3]),
               Favail=bpop[4],
               DOSE=a[1])
  return(parameters) 
}
## -- Define initial design  and design space
poped.db <- create.poped.database(ff_file="ff.PK.1.comp.oral.sd.CL",
                                  fg_file="sfg",
                                  fError_file="feps.prop",
                                  bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), 
                                  notfixed_bpop=c(1,1,1,0),
                                  d=c(CL=0.07, V=0.02, KA=0.6), 
                                  sigma=0.01,
                                  groupsize=32,
                                  xt=c( 0.5,1,2,6,24,36,72,120),
                                  minxt=0,
                                  maxxt=120,
                                  a=70)
# warfarin optimization model
#for the FO approximation
ind=1
# no occasion defined in this example, so result is zero
output <- mf3(model_switch=t(poped.db$global_model_switch[ind,,drop=FALSE]),
   xt=t(poped.db$gxt[ind,,drop=FALSE]),
   x=zeros(0,1),
   a=t(poped.db$ga[ind,,drop=FALSE]),
   bpop=poped.db$gbpop[,2,drop=FALSE],
   d=poped.db$param.pt.val$d,
   sigma=poped.db$sigma,
   docc=poped.db$param.pt.val$docc,
   poped.db)
# in this simple case the full FIM is just the sum of the individual FIMs
# and all the individual FIMs are the same
det(output$ret*32) == det(evaluate.fim(poped.db,fim.calc.type=1))Run the code above in your browser using DataLab