Learn R Programming

PopED (version 0.1.1)

mf7: The full Fisher Information Matrix (FIM) for one individual Calculating one model switch at a time, good for large matrices.

Description

Compute the full FIM for one individual given specific model(s), parameters, design and methods. This computation calculates the FIM for each model switch separately. Correlations between the models parameters are assumed to be zero.

Usage

mf7(model_switch, xt_ind, x, a, bpop, d, sigma, docc, poped.db)

Arguments

model_switch
A vector that is the same size as xt, specifying which model each sample belongs to.
xt_ind
A vector of sample times.
x
A vector for the discrete design variables.
a
A vector of covariates.
bpop
The fixed effects parameter values. Supplied as a vector.
d
A between subject variability matrix (OMEGA in NONMEM).
sigma
A residual unexplained variability matrix (SIGMA in NONMEM).
docc
A between occasion variability matrix.
poped.db
A PopED database.

Value

  • As a list:
  • retThe FIM for one individual
  • poped.dbA PopED database

See Also

Used by mftot6.

Other FIM: LinMatrixH; LinMatrixLH; LinMatrixL_occ; calc_ofv_and_fim; ed_laplace_ofv; ed_mftot; evaluate.e.ofv.fim; evaluate.fim; gradf_eps; mf3; mf5; mf6; mf8; mftot0; mftot1; mftot2; mftot3; mftot4; mftot5; mftot6; mftot7; mftot; mf; ofv_criterion; ofv_fim

Examples

Run this code
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation 
##   for population pharmacokinetics-pharmacodynamics studies", 
##   Br. J. Clin. Pharm., 2014. 

library(PopED)

## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL

## -- parameter definition function 
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
  parameters=c(CL=bpop[1]*exp(b[1]),
               V=bpop[2]*exp(b[2]),
               KA=bpop[3]*exp(b[3]),
               Favail=bpop[4],
               DOSE=a[1])
  return(parameters) 
}

## -- Define initial design  and design space
poped.db <- create.poped.database(ff_file="ff.PK.1.comp.oral.sd.CL",
                                  fg_file="sfg",
                                  fError_file="feps.prop",
                                  bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), 
                                  notfixed_bpop=c(1,1,1,0),
                                  d=c(CL=0.07, V=0.02, KA=0.6), 
                                  sigma=0.01,
                                  groupsize=32,
                                  xt=c( 0.5,1,2,6,24,36,72,120),
                                  minxt=0,
                                  maxxt=120,
                                  a=70)
# warfarin optimization model

#for the FO approximation
ind=1

# no occasion defined in this example, so result is zero
output <- mf7(model_switch=t(poped.db$global_model_switch[ind,,drop=FALSE]),
   xt=t(poped.db$gxt[ind,,drop=FALSE]),
   x=zeros(0,1),
   a=t(poped.db$ga[ind,,drop=FALSE]),
   bpop=poped.db$gbpop[,2,drop=FALSE],
   d=poped.db$param.pt.val$d,
   sigma=poped.db$sigma,
   docc=poped.db$param.pt.val$docc,
   poped.db)

# in this simple case the full FIM is just the sum of the individual FIMs
# and all the individual FIMs are the same
det(output$ret*32) == det(evaluate.fim(poped.db,fim.calc.type=6))

Run the code above in your browser using DataLab