## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
library(PopED)
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
}
## -- Define initial design and design space
poped.db <- create.poped.database(ff_file="ff.PK.1.comp.oral.sd.CL",
fg_file="sfg",
fError_file="feps.prop",
bpop=c(CL=0.15, V=8, KA=1.0, Favail=1),
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=0.01,
groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
minxt=0,
maxxt=120,
a=70)
# warfarin optimization model
#for the FO approximation
ind=1
# no occasion defined in this example, so result is zero
output <- mf(model_switch=t(poped.db$global_model_switch[ind,,drop=FALSE]),
xt_ind=t(poped.db$gxt[ind,,drop=FALSE]),
x=zeros(0,1),
a=t(poped.db$ga[ind,,drop=FALSE]),
bpop=poped.db$gbpop[,2,drop=FALSE],
d=poped.db$param.pt.val$d,
sigma=poped.db$sigma,
docc=poped.db$param.pt.val$docc,
poped.db)
# in this simple case the full FIM is just the sum of the individual FIMs
# and all the individual FIMs are the same
det(output$ret*32) == det(evaluate.fim(poped.db,fim.calc.type=0))
Run the code above in your browser using DataLab