Learn R Programming

PopED (version 0.1.1)

ofv_criterion: Normalize an objective function by the size of the FIM matrix

Description

Compute a normalized OFV based on the size of the FIM matrix. This value can then be used in efficiency calculations. This is NOT the OFV used in optimization, see ofv_fim.

Usage

ofv_criterion(ofv_f, num_parameters, poped.db,
  ofv_calc_type = poped.db$ofv_calc_type)

Arguments

ofv_f
An objective function
num_parameters
The number of parameters to use for normalization
poped.db
a poped database
ofv_calc_type
OFV calculation type for FIM
  • 1 = "D-optimality". Determinant of the FIM: det(FIM)
  • 2 = "A-optimality". Inverse of the sum of the expected parameter variances: 1/trace_matrix(inv(FIM))
  • 4 = "lnD-optimality". Natural logarithm of the

Value

  • The specified criterion value.

See Also

Other FIM: LinMatrixH; LinMatrixLH; LinMatrixL_occ; calc_ofv_and_fim; ed_laplace_ofv; ed_mftot; evaluate.e.ofv.fim; evaluate.fim; gradf_eps; mf3; mf5; mf6; mf7; mf8; mftot0; mftot1; mftot2; mftot3; mftot4; mftot5; mftot6; mftot7; mftot; mf; ofv_fim

Examples

Run this code
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation 
##   for population pharmacokinetics-pharmacodynamics studies", 
##   Br. J. Clin. Pharm., 2014. 

## Optimization using an additive + proportional reidual error to 
##   avoid sample times at very low concentrations (time 0 or very late samoples).
library(PopED)

## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL

## -- parameter definition function 
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
  parameters=c(CL=bpop[1]*exp(b[1]),
               V=bpop[2]*exp(b[2]),
               KA=bpop[3]*exp(b[3]),
               Favail=bpop[4],
               DOSE=a[1])
  return(parameters) 
}

## -- Define initial design  and design space
poped.db <- create.poped.database(ff_file="ff.PK.1.comp.oral.sd.CL",
                                  fg_file="sfg",
                                  fError_file="feps.add.prop",
                                  bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), 
                                  notfixed_bpop=c(1,1,1,0),
                                  d=c(CL=0.07, V=0.02, KA=0.6), 
                                  sigma=c(0.01,0.25),
                                  groupsize=32,
                                  xt=c( 0.5,1,2,6,24,36,72,120),
                                  minxt=0,
                                  maxxt=120,
                                  a=70,
                                  mina=0,
                                  maxa=100)

## evaluate initial design 
FIM <- evaluate.fim(poped.db) # new name for function needed
FIM
get_rse(FIM,poped.db)

ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=1),
              length(get_unfixed_params(poped.db)[["all"]]),
              poped.db,
              ofv_calc_type=1) # det(FIM)

ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=2),
              length(get_unfixed_params(poped.db)[["all"]]),
              poped.db,
              ofv_calc_type=2) 

ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=4),
              length(get_unfixed_params(poped.db)[["all"]]),
              poped.db,
              ofv_calc_type=4)

ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=6),
              length(get_unfixed_params(poped.db)[["all"]]),
              poped.db,
              ofv_calc_type=6)

ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=7),
              length(get_unfixed_params(poped.db)[["all"]]),
              poped.db,
              ofv_calc_type=7)

Run the code above in your browser using DataLab