Learn R Programming

RVtests (version 1.0)

SPLS: Sparse PLS for RV Tests

Description

Use SPLS for selecting significant variants and testing the variants associated with disease traits.

Usage

SPLS(x, y, scale = TRUE, ncomp, eta.grid, size.max, a = 2, npermutation = 0, npermutation.max, min.nonsignificant.counts)

Arguments

x
Genotype matrix
y
Phenotype vector
scale
see spls
ncomp
Number of components
eta.grid
see spls
size.max
Maximum number of variants included
a
Penalty parameter for information criterion, a=2 for AIC.
npermutation
Number of permutation, if less than 1, the permutation will not be run.
npermutation.max
Maximum permutation, if missing, equal to npermutation.
min.nonsignificant.counts
Minimum nonsignificant counts, if missing, equal to 10.

Value

  • nonsignificant.countsCounts of permuted data that have a higher score than unpermuted data.
  • pvalue.empiricalEmpirical pvalue via permutation
  • pvalue.nominalTheoretical pvalue for the selected variants
  • vsThe selected variants
  • total.permutationTotal permutation

Details

Use spls package to implement SPLS and an information criterion, AIC, BIC, or GIC, to select the best subset of variants.

References

C. Xu, M. Ladouceur, Z. Dastani, J. B. Richards, A. Ciampi, C. M.T. Greenwood (2012), Multiple regression methods show great potential for rare variant association tests, PLoSONE.

See Also

spls, LASSO