Learn R Programming

HIBAG (version 1.8.3)

hlaOutOfBag: Out-of-bag estimation of overall accuracy, per-allele sensitivity, etc

Description

Out-of-bag estimation of overall accuracy, per-allele sensitivity, specificity, positive predictive value, negative predictive value and call rate.

Usage

hlaOutOfBag(model, hla, snp, call.threshold=NaN, verbose=TRUE)

Arguments

model
hla
the training HLA types, an object of hlaAlleleClass
snp
the training SNP genotypes, an object of hlaSNPGenoClass
call.threshold
the specified call threshold; if NaN, no threshold is used
verbose
if TRUE, show information

Value

Return hlaAlleleClass.

See Also

hlaCompareAllele, hlaReport

Examples

Run this code
# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# SNP predictors within the flanking region on each side
region <- 500   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
length(snpid)  # 275

# training and validation genotypes
geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
    samp.sel = match(hla$value$sample.id, HapMap_CEU_Geno$sample.id))

# train a HIBAG model
set.seed(100)
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, geno, nclassifier=4)
summary(model)

# out-of-bag estimation
(comp <- hlaOutOfBag(model, hla, geno, call.threshold=NaN, verbose=TRUE))

# report
hlaReport(comp, type="txt")

hlaReport(comp, type="tex")

hlaReport(comp, type="html")

Run the code above in your browser using DataLab