Rdocumentation
powered by
Learn R Programming
Opt5PL (version 0.1.1)
Optimal Designs for the 5-Parameter Logistic Model
Description
Obtain and evaluate various optimal designs for the 3, 4, and 5-parameter logistic models. The optimal designs are obtained based on the numerical algorithm in Hyun, Wong, Yang (2018)
.
Copy Link
Link to current version
Version
Version
0.1.1
0.1.0
Install
install.packages('Opt5PL')
Monthly Downloads
162
Version
0.1.1
License
GPL-2
Maintainer
Seung Hyun
Last Published
October 6th, 2018
Functions in Opt5PL (0.1.1)
Search all functions
Plus
Matrix addition
Minus
Matrix subtraction
Inv
Adjusting invere information matrix being not singular
infor
Obtain a information matrix at a single design point
sMultiple
Multiply a constant to a matrix
EDpeff
Obtaining c-efficiency for estimating the EDp under the 5-parameter logistic model.
c_weight_2
The second derivative of the c-optimality criterion with respect to the model parameters
Dseff
Obtaining Ds-efficiency for estimating the asymmetric factor under the 5-parameter logistic model.
c_weight_1
The first derivative of the c-optimality criterion w.r.t the model parameters
EDpOPT
Search c-optimal designs for estimating the EDp under the 5-parameter logistic model
Multiple
Matrix multiplication
RDOPT
Search the robust D-optimal designs for estimating model parameters
Trans
Transpose of a matrix
DS1
Sensitivity function of c-optimality criterion for the EDp
f
Gradient of the mean function
ds11
Sensitivity function of Ds-optimality criterion
Dp
Target dose, EDp
d11
Computing each element of the function DD_weight_1
dd11
Computing each element of the function DD_weight_2
DsOPT
Search Ds-optimal design for estimating the asymmetric factor under the 5-parameter logistic model.
SDM
Summation of diagonal elements in a matrix
smalld1
Sub-function of the function D_weight_1
c_weight
One iteration to run Newton Raphson to get c-optimal weights
smalldd1
Sub-function of the function D_weight_2
g
Partial derivative of the EDp with respect to the model parameters
S_weight
Newton Raphson method to get optimal weights
ginv
Generalized Inverse Matrix
smallds1
Sensitivity function of D-optimality criterion
upinfor
Obtain normalized Fisher information matrix
D_weight_2
The second derivative of the D-optimality criterion w.r.t the model parameters
D_weight_1
The first derivative of the D-optimality criterion w.r.t the model parameters
D_weight
One iteration to run Newton Raphson to get D-optimal weights
D1
Computing each element of the function c_weight_1
DD_weight_2
The second derivative of the Ds-optimality criterion with respect to the model parameters
DD_weight_1
The first derivative of the Ds-optimality criterion with respect to the model parameters
DD1
Computing each element of the function c_weight_2
DD_weight
One iteration to run Newton Raphson to get Ds-optimal weights
Deff
Obtaining D-efficiency for estimating model parameters