Rdimtools is an R suite of a number of dimension reduction and estimation methods implemented using RcppArmadillo for efficient computations. Please see the section below for the complete composition of this package and what we can provide in a unifying interface across many methods.
The package consists of following families of functions whose names start with do.
, est.
, and aux.
for performing dimension reduction/manifold learning, estimating intrinsic dimension, and some efficient
implementations of other useful methods respectively.
do.
functions are for dimension reduction (or, manifold learning) methods.
A simple taxonomy of the methods would be to categorize based on the linearity of
embedding mappings. In the table below, TYPE represents whether it is supervised (S),
semisupervised (SS), or unsupervised (U).
For linear methods, we have
FUNCTION | TYPE | ALGORITHM |
do.adr |
U | Adaptive Dimension Reduction |
do.ammc |
S | Adaptive Maximum Margin Criterion |
do.anmm |
S | Average Neighborhood Margin Maximization |
do.asi |
U | Adaptive Subspace Iteration |
do.bpca |
U | Bayesian Principal Component Analysis |
do.cca |
S | Canonical Correlation Analysis |
do.cnpe |
U | Complete Neighborhood Preserving Embedding |
do.crp |
U | Collaborative Representation-based Projection |
do.cscore |
S | Constraint Score |
do.cscoreg |
S | Constraint Score using Spectral Graph |
do.dagdne |
S | Double-Adjacency Graphs-based Discriminant Neighborhood Embedding |
do.dne |
S | Discriminant Neighborhood Embedding |
do.disr |
U | Diversity-Induced Self-Representation |
do.dspp |
S | Discriminative Sparsity Preserving Projection |
do.elde |
S | Exponential Local Discriminant Embedding |
do.elpp2 |
U | Enhanced Locality Preserving Projection (2013) |
do.enet |
S | Elastic Net Regularization |
do.eslpp |
S | Extended Supervised Locality Preserving Projection |
do.extlpp |
U | Extended Locality Preserving Projection |
do.fa |
U | (Exploratory) Factor Analysis |
do.fscore |
S | Fisher Score |
do.fssem |
U | Feature Subset Selection using Expectation-Maximization |
do.ica |
U | Independent Component Analysis |
do.isoproj |
U | Isometric Projection |
do.kmvp |
S | Kernel-Weighted Maximum Variance Projection |
do.kudp |
U | Kernel-Weighted Unsupervised Discriminant Projection |
do.lasso |
S | Least Absolute Shrinkage and Selection Operator |
do.lda |
S | Linear Discriminant Analysis |
do.ldakm |
U | Combination of LDA and K-means |
do.lde |
S | Local Discriminant Embedding |
do.ldp |
S | Locally Discriminating Projection |
do.lea |
U | Locally Linear Embedded Eigenspace Analysis |
do.lfda |
S | Local Fisher Discriminant Analysis |
do.llp |
U | Local Learning Projections |
do.lltsa |
U | Linear Local Tangent Space Alignment |
do.lmds |
U | Landmark Multidimensional Scaling |
do.lpca |
U | Locally Principal Component Analysis |
do.lpe |
U | Locality Pursuit Embedding |
do.lpfda |
S | Locality Preserving Fisher Discriminant Analysis |
do.lpmip |
U | Locality-Preserved Maximum Information Projection |
do.lpp |
U | Locality Preserving Projection |
do.lqmi |
S | Linear Quadratic Mutual Information |
do.lscore |
U | Laplacian Score |
do.lsda |
S | Locality Sensitive Discriminant Analysis |
do.lsdf |
SS | Locality Sensitive Discriminant Feature |
do.lsir |
S | Localized Sliced Inverse Regression |
do.lspe |
U | Locality and Similarity Preserving Embedding |
do.lspp |
S | Local Similarity Preserving Projection |
do.mcfs |
U | Multi-Cluster Feature Selection |
do.mds |
U | (Metric) Multidimensional Scaling |
do.mfa |
S | Marginal Fisher Analysis |
do.mlie |
S | Maximal Local Interclass Embedding |
do.mmc |
S | Maximum Margin Criterion |
do.mmp |
SS | Maximum Margin Projection |
do.mmsd |
S | Multiple Maximum Scatter Difference |
do.modp |
S | Modified Orthogonal Discriminant Projection |
do.msd |
S | Maximum Scatter Difference |
do.mvp |
S | Maximum Variance Projection |
do.nolpp |
U | Nonnegative Orthogonal Locality Preserving Projection |
do.nonpp |
U | Nonnegative Orthogonal Neighborhood Preserving Projections |
do.npca |
U | Nonnegative Principal Component Analysis |
do.npe |
U | Neighborhood Preserving Embedding |
do.nrsr |
U | Non-convex Regularized Self-Representation |
do.odp |
S | Orthogonal Discriminant Projection |
do.olda |
S | Orthogonal Linear Discriminant Analysis |
do.olpp |
U | Orthogonal Locality Preserving Projection |
do.onpp |
U | Orthogonal Neighborhood Preserving Projections |
do.opls |
S | Orthogonal Partial Least Squares |
do.pca |
U | Principal Component Analysis |
do.pflpp |
U | Parameter-Free Locality Preserving Projection |
do.pls |
S | Partial Least Squares |
do.ppca |
U | Probabilistic Principal Component Analysis |
do.rlda |
S | Regularized Linear Discriminant Analysis |
do.rndproj |
U | Random Projection |
do.rpcag |
U | Robust Principal Component Analysis via Geometric Median |
do.rsir |
S | Regularized Sliced Inverse Regression |
do.rsr |
U | Regularized Self-Representation |
do.sammc |
SS | Semi-Supervised Adaptive Maximum Margin Criterion |
do.save |
S | Sliced Average Variance Estimation |
do.sda |
SS | Semi-Supervised Discriminant Analysis |
do.sdlpp |
U | Sample-Dependent Locality Preserving Projection |
do.sir |
S | Sliced Inverse Regression |
do.slpe |
S | Supervised Locality Pursuit Embedding |
do.slpp |
S | Supervised Locality Preserving Projection |
do.spc |
S | Supervised Principal Component Analysis |
do.spca |
U | Sparse Principal Component Analysis |
do.specs |
S | Supervised Spectral Feature Selection |
do.specu |
U | Unsupervised Spectral Feature Selection |
do.spp |
U | Sparsity Preserving Projection |
do.spufs |
U | Structure Preserving Unsupervised Feature Selection |
do.ssldp |
SS | Semi-Supervised Locally Discriminant Projection |
do.udfs |
U | Unsupervised Discriminative Features Selection |
do.udp |
U | Unsupervised Discriminant Projection |
Also, we have nonlinear methods implemented
FUNCTION | TYPE | ALGORITHM |
do.bmds |
U | Bayesian Multidimensional Scaling |
do.cge |
SS | Constrained Graph Embedding |
do.cisomap |
U | Conformal Isometric Feature Mapping |
do.crca |
U | Curvilinear Component Analysis |
do.crda |
U | Curvilinear Distance Analysis |
do.dm |
U | Diffusion Maps |
do.dve |
U | Distinguishing Variance Embedding |
do.fastmap |
U | FastMap |
do.idmap |
U | Interactive Document Map |
do.iltsa |
U | Improved Local Tangent Space Alignment |
do.isomap |
U | Isometric Feature Mapping |
do.ispe |
U | Isometric Stochastic Proximity Embedding |
do.keca |
U | Kernel Entropy Component Analysis |
do.klde |
S | Kernel Local Discriminant Embedding |
do.klfda |
S | Kernel Local Fisher Discriminant Analysis |
do.klsda |
S | Kernel Locality Sensitive Discriminant Analysis |
do.kmfa |
S | Kernel Marginal Fisher Analysis |
do.kmmc |
S | Kernel Maximium Margin Criterion |
do.kpca |
U | Kernel Principal Component Analysis |
do.kqmi |
S | Kernel Quadratic Mutual Information |
do.ksda |
SS | Kernel Semi-Supervised Discriminant Analysis |
do.lamp |
U | Local Affine Multidimensional Scaling |
do.lapeig |
U | Laplacian Eigenmaps |
do.lisomap |
U | Landmark Isometric Feature Mapping |
do.lle |
U | Locally Linear Embedding |
do.llle |
U | Local Linear Laplacian Eigenmaps |
do.ltsa |
U | Local Tangent Space Alignment |
do.mve |
U | Minimum Volume Embedding |
do.mvu |
U | Maximum Variance Unfolding / Semidefinite Embedding |
do.nnp |
U | Nearest Neighbor Projection |
do.plp |
U | Piecewise Laplacian Projection |
do.ree |
U | Robust Euclidean Embedding |
do.rpca |
U | Robust Principal Component Analysis |
do.sammon |
U | Sammon Mapping |
do.sne |
U | Stochastic Neighbor Embedding |
do.spe |
U | Stochastic Proximity Embedding |
do.splapeig |
S | Supervised Laplacian Eigenmaps |
do.spmds |
U | Spectral Multidimensional Scaling |
est.
family of functions include,
FUNCTION | TYPE | ALGORITHM |
est.boxcount |
G | Box-Counting Dimension |
est.clustering |
G | Clustering-based Estimation |
est.correlation |
G | Correlation Dimension |
est.danco |
G | Dimensionality from Angle and Norm Concentration |
est.made |
G/P | Manifold-Adaptive Dimension Estimation |
est.gdistnn |
G/P | Graph Distance based on Manifold Assummption |
est.mindkl |
G | Minimum Neighbor Distance with Kullback Leibler Divergence |
est.mindml |
G | Minimum Neighbor Distance with Maximum Likelihood |
est.mle1 |
G | MLE using Poisson Process |
est.mle2 |
G | MLE using Poisson Process with Bias Correction |
est.nearneighbor1 |
G | Near-Neighbor Information |
est.nearneighbor2 |
G | Near-Neighbor Information with Bias Correction |
est.incisingball |
G | Estimation using Incising Ball |
est.packing |
G | Estimation using Packing Numbers |
est.pcathr |
G | PCA Thresholding with Accumulated Variance |
est.twonn |
G | Minimal Neighborhood Information |
where the taxonomy is of global(G) or pointwise(P). Global methods return a single estimated dimension of the data manifold, whereas Pointwise methods return locally estimated intrinsic dimension at each point.
If the original dimension reduction method was linear-type, then you could use oos.linear
function.
FUNCTION | ALGORITHM |
Regardless of the types of previous manifold learning methods, belows are general out-of-sample methods.
FUNCTION | ALGORITHM |
Some auxiliary functions (aux.
) are also provided,
FUNCTION | DESCRIPTION |
aux.gensamples |
generates samples from predefined shapes |
aux.graphnbd |
builds a neighborhood graph given certain criteria |
aux.kernelcov |
computes a centered gram matrix with 20 kernels supported |
aux.preprocess |
performs preprocessing of centering, decorrelating, or whitening |
aux.shortestpath |
Floyd-Warshall algorithm (it's Fast!) |