Learn R Programming

wpa (version 1.4.3)

create_stacked: Horizontal stacked bar plot for any metric

Description

Creates a sum total calculation using selected metrics, where the typical use case is to create different definitions of collaboration hours. Returns a stacked bar plot by default. Additional options available to return a summary table.

Usage

create_stacked(
  data,
  hrvar = "Organization",
  metrics = c("Meeting_hours", "Email_hours"),
  mingroup = 5,
  return = "plot",
  stack_colours = c("#1d627e", "#34b1e2", "#b4d5dd", "#adc0cb"),
  plot_title = "Collaboration Hours",
  plot_subtitle = "Weekly collaboration hours"
)

Arguments

data

A Standard Person Query dataset in the form of a data frame.

hrvar

String containing the name of the HR Variable by which to split metrics. Defaults to "Organization". To run the analysis on the total instead of splitting by an HR attribute, supply NULL (without quotes).

metrics

A character vector to specify variables to be used in calculating the "Total" value, e.g. c("Meeting_hours", "Email_hours"). The order of the variable names supplied determine the order in which they appear on the stacked plot.

mingroup

Numeric value setting the privacy threshold / minimum group size. Defaults to 5.

return

Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".

stack_colours

A character vector to specify the colour codes for the stacked bar charts.

plot_title

An option to override plot title.

plot_subtitle

An option to override plot subtitle.

Value

Returns a 'ggplot' object by default, where 'plot' is passed in return. When 'table' is passed, a summary table is returned as a data frame.

See Also

Other Visualization: afterhours_dist(), afterhours_fizz(), afterhours_line(), afterhours_rank(), afterhours_summary(), afterhours_trend(), collaboration_area(), collaboration_dist(), collaboration_fizz(), collaboration_line(), collaboration_rank(), collaboration_sum(), collaboration_trend(), create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_trend(), email_dist(), email_fizz(), email_line(), email_rank(), email_summary(), email_trend(), external_network_plot(), hr_trend(), hrvar_count(), internal_network_plot(), keymetrics_scan(), meeting_dist(), meeting_fizz(), meeting_line(), meeting_quality(), meeting_rank(), meeting_summary(), meeting_trend(), meetingtype_dist_ca(), meetingtype_dist_mt(), meetingtype_dist(), meetingtype_summary(), mgrcoatt_dist(), mgrrel_matrix(), one2one_dist(), one2one_fizz(), one2one_freq(), one2one_line(), one2one_rank(), one2one_sum(), one2one_trend(), period_change(), workloads_dist(), workloads_fizz(), workloads_line(), workloads_rank(), workloads_summary(), workloads_trend(), workpatterns_area(), workpatterns_rank()

Other Flexible: create_bar_asis(), create_bar(), create_boxplot(), create_bubble(), create_dist(), create_fizz(), create_hist(), create_line_asis(), create_line(), create_period_scatter(), create_rank(), create_sankey(), create_scatter(), create_trend(), period_change()

Examples

Run this code
# NOT RUN {
sq_data %>%
  create_stacked(hrvar = "LevelDesignation",
                 metrics = c("Meeting_hours", "Email_hours"),
                 return = "plot")

sq_data %>%
  create_stacked(hrvar = "FunctionType",
                 metrics = c("Meeting_hours",
                             "Email_hours",
                             "Call_hours",
                             "Instant_Message_hours"),
                 return = "plot")

sq_data %>%
  create_stacked(hrvar = "FunctionType",
                 metrics = c("Meeting_hours",
                             "Email_hours",
                             "Call_hours",
                             "Instant_Message_hours"),
                 return = "table")
# }

Run the code above in your browser using DataLab