fdata
plot.fdata
fdata.deriv
CV.S
GCV.S
min.np
min.basis
S.NW
S.LLR
S.basis
Var.e
Var.y
}
B.- Functional Depth and Functional Outlier Detection
The functional data depth calculated by the different depth functions implemented that could be use as a measure of centrality or outlyingness.
B.1-Depth methods Depth:
depth.FM
depth.mode
depth.RP
depth.RPD
Descriptive
}
B.2-Functional Outliers detection methods:
outliers.depth.trim
outliers.depth.pond
outliers.thres.lrt
outliers.lrt
quantile.outliers.trim
quantile.outliers.pond
}
C.- Functional Regression with Scalar Response
C.1. Functional explanatory covariate
The functions included in this section allow the estimation of different functional regression models with a scalar response and a single functional explicative covariate.
fregre.pc
fregre.pc.cv
fregre.basis
fregre.basis.cv
fregre.np
fregre.np.cv
summary.fregre.fd
predict.fregre.fd
}
C.2. Functional and non functional explanatory covariates.
The functions in this section extends those regression models in previous section in several ways.
Semifunctional partial linear regression fregre.plm is an extension of functional nonparameric regression fregre.np allowing include non-functional variables.
Functional linear regression fregre.lm and functional generalized linear regression fregre.glm are an extensions of fregre.basis and fregre.pc allowing include more than one functional variable and other non-functional variables, as lm or glm functions.
fregre.lm
fregre.glm
fregre.plm
predict.fregre.fd
predict.fregre.glm
predict.fregre.plm
}
D.- Functional Supervised Classification
This section allows the estimation of the groups in a training set of functional data fdata class by different nonparametric methods of supervised classification. Once these classifiers have been trained, they can be used to predict on new functional data.
Package allows the estimation of the groups in a training set of functional data by different nonparametric methods of supervised classification.
-Kernel classification methods:
classif.knn.fd
classif.kernel.fd
classif.kernel.fb
summary.classif.fd
predict.classif.fd
}
E.- Functional Non-Supervised Classification
This section allows the estimation of the groups in a functional data set fdata class by kmeans method.
kmeans.fd
}
F.- Functional ANOVA
anova.RPm
anova.hetero
}
G.- Utilities and auxiliary functions:
fdata.bootstrap
fdata2fd
cond.F
cond.quantile
cond.mode
FDR
Kernel
Kernel.asymmetric
Kernel.integrate
metric.lp
pc.cor
pc.fdata
semimetric.NPFDA
semimetric.basis
}