Learn R Programming

nlmixr2auto (version 1.0.0)

Automated Population Pharmacokinetic Modeling

Description

Automated population pharmacokinetic modeling framework for data-driven initialisation, model evaluation, and metaheuristic optimization. Supports genetic algorithms, ant colony optimization, tabu search, and stepwise procedures for automated model selection and parameter estimation within the nlmixr2 ecosystem.

Copy Link

Version

Install

install.packages('nlmixr2auto')

Version

1.0.0

License

GPL (>= 3)

Issues

Pull Requests

Stars

Forks

Maintainer

Zhonghui Huang

Last Published

February 6th, 2026

Functions in nlmixr2auto (1.0.0)

initNodeList

Initialize node list for ACO search space
param.bounds

Define Parameter Bounds for PK Models
mod.run

Run population pharmacokinetic model with pre-defined search space
generate_neighbors_df

Generate neighbor models
initialize_param

Initialize model parameters from parameter table
p.calculation

Calculate selection probabilities for each node
initialize_param_table

Generate initial parameter table for pharmacometric model estimation
get.mod.lst

Summarize parameter estimates and run information from an nlmixr2 fit
omega_block

Generate omega block Code for nlmixr2 model
is_move_tabu

Check if a move is tabu
phi.calculate

Update pheromone levels for each decision node
perturb_2bit

Apply 2-bit perturbation to escape local optimum
parseParams

Parse string vector to model parameters
print.sfOperatorResult

Print method for sfOperatorResult objects
print.acoOperatorResult

Print method for ACO operator results
penaltyControl

Configure penalty settings for model evaluation
ppkmodGen

Generate a Pharmacokinetic (PK) Model for nlmixr2
print.gaOperatorResult

Print method for gaOperatorResult objects
parseName

Parse model coding vector to model name
print.tabuOperatorResult

Print method for tabu operator results
rank_new

Ranking with significance difference threshold
step_correlation

Evaluate inclusion of ETA correlation structure
step_elimination

Screen elimination type (linear vs Michaelis-Menten)
sf.operator

Stepwise model building operator for model selection
spaceConfig

Get search space configuration
runlocal

Perform 1-bit local search
step_compartments

Screen number of compartments
run_model_in_subprocess

Run an nlmixr2 model in an isolated subprocess
step_iiv_ka

Evaluate inter-individual variability on Ka
step_iiv_f

Forward selection of IIV on structural parameters
validStringbinary

Validate and correct model string for GA
tabu.operator

Tabu search operator for model selection
step_iiv_km

Evaluate inter-individual variability on Km
tabuControl

Control Parameters for Tabu Search
validStringcat

Validate and correct model string for ACO/TS
step_rv

Evaluate residual error model structure
add_variability

Add inter-individual variability to a parameter
acoControl

Create control parameters for the ACO algorithm
build_odeline

Build ODE model lines for pharmacokinetic modeling
base_model

Create a base model code for single-start model search algorithms
add_covariate

Add a covariate effect to a parameter model
createAnts

Create ant population for ACO
applyParamDeps

Apply parameter dependency rules
aco.operator

ACO operator for model selection
auto_param_table

Automatically generate a parameter table with initial estimates
create.pop

Create an initial GA population
gaControl

Control parameters for genetic algorithm
fitness

Evaluate fitness of a population pharmacokinetic model
ga.crossover

Crossover operator (one- or two-point) for binary chromosomes
ga.sel.tournament

Tournament selection
ga.operator

Genetic algorithm operator for model selection
ga.mutation

Mutation operator for binary genetic algorithms
.twoBitCode

2-bit code helper
encodeBinary

Encode categorical encoding to binary encoding
detect_move

Detect the primary move between two model codes
decodeBinary

Decode binary encoding to categorical encoding