rnoaa
rnoaa
is an R interface to many NOAA data sources. We don’t cover all
of them, but we include many commonly used sources, and add we are
always adding new sources. We focus on easy to use interfaces for
getting NOAA data, and giving back data in easy to use formats
downstream. We currently don’t do much in the way of plots or analysis.
Data sources in rnoaa
- NOAA NCDC climate data:
- We are using the NOAA API version 2
- Docs for the NCDC API are at http://www.ncdc.noaa.gov/cdo-web/webservices/v2
- GHCN Daily data is available at http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/ via FTP and HTTP
- Severe weather data docs are at http://www.ncdc.noaa.gov/swdiws/
- Sea ice data
- NOAA buoy data
- ERDDAP data
- Now in package rerddap
- Tornadoes! Data from the NOAA Storm Prediction Center
- HOMR - Historical Observing Metadata Repository - from NOAA NCDC
- Storm data - from the International Best Track Archive for Climate Stewardship (IBTrACS)
- GHCND FTP data - NOAA NCDC API has some/all (not sure really) of this data, but FTP allows to get more data more quickly
- Global Ensemble Forecast System (GEFS) data
- Extended Reconstructed Sea Surface Temperature (ERSST) data
- Argo buoys - a global array of more than 3,000 free-drifting profiling floats that measures thetemperature and salinity of the upper 2000 m of the ocean
- NOAA CO-OPS - tides and currents data
- NOAA Climate Prediction Center (CPC)
- Africa Rainfall Climatology version 2
- Blended Sea Winds
- Local Climatological Data
- Storm Events Database
Help
There is a tutorial on the rOpenSci website, and there are many tutorials in the package itself, available in your R session, or on CRAN. The tutorials:
- NOAA Buoy vignette
- NOAA National Climatic Data Center (NCDC) vignette (examples)
- NOAA NCDC attributes vignette
- NOAA NCDC workflow vignette
- Sea ice vignette
- Severe Weather Data Inventory (SWDI) vignette
- Historical Observing Metadata Repository (HOMR) vignette
- Storms (IBTrACS) vignette
netcdf data
Functions to work with buoy data use netcdf files. You’ll need the
ncdf
package for those functions, and those only. ncdf
is in
Suggests in this package, meaning you only need ncdf
if you are using
the buoy functions. You’ll get an informative error telling you to
install ncdf
if you don’t have it and you try to use the buoy
functions. Installation of ncdf
should be straightforward on Mac and
Windows, but on Linux you may have issues. See
http://cran.r-project.org/web/packages/ncdf/INSTALL
NOAA NCDC Datasets
There are many NOAA NCDC datasets. All data sources work, except
NEXRAD2
and NEXRAD3
, for an unknown reason. This relates to
ncdc_*()
functions
only.
Dataset | Description | Start Date | End Date | Data Coverage |
---|---|---|---|---|
GHCND | Daily Summaries | 1763-01-01 | 2018-12-09 | 1.00 |
GSOM | Global Summary of the Month | 1763-01-01 | 2018-11-01 | 1.00 |
GSOY | Global Summary of the Year | 1763-01-01 | 2018-01-01 | 1.00 |
NEXRAD2 | Weather Radar (Level II) | 1991-06-05 | 2018-12-10 | 0.95 |
NEXRAD3 | Weather Radar (Level III) | 1994-05-20 | 2018-12-07 | 0.95 |
NORMAL_ANN | Normals Annual/Seasonal | 2010-01-01 | 2010-01-01 | 1.00 |
NORMAL_DLY | Normals Daily | 2010-01-01 | 2010-12-31 | 1.00 |
NORMAL_HLY | Normals Hourly | 2010-01-01 | 2010-12-31 | 1.00 |
NORMAL_MLY | Normals Monthly | 2010-01-01 | 2010-12-01 | 1.00 |
PRECIP_15 | Precipitation 15 Minute | 1970-05-12 | 2014-01-01 | 0.25 |
PRECIP_HLY | Precipitation Hourly | 1900-01-01 | 2014-01-01 | 1.00 |
NOAA NCDC Attributes
Each NOAA dataset has a different set of attributes that you can potentially get back in your search. See http://www.ncdc.noaa.gov/cdo-web/datasets for detailed info on each dataset. We provide some information on the attributes in this package; see the vignette for attributes to find out more
NCDC Authentication
You’ll need an API key to use the NOAA NCDC functions (those starting
with ncdc*()
) in this package (essentially a password). Go to
http://www.ncdc.noaa.gov/cdo-web/token to get one. You can’t use this
package without an API key.
Once you obtain a key, there are two ways to use it.
- Pass it inline with each function call (somewhat
cumbersome)
ncdc(datasetid = 'PRECIP_HLY', locationid = 'ZIP:28801', datatypeid = 'HPCP', limit = 5, token = "YOUR_TOKEN")
- Alternatively, you might find it easier to set this as an option,
either by adding this line to the top of a script or somewhere in
your
.rprofile
options(noaakey = "KEY_EMAILED_TO_YOU")
- You can always store in permamently in your
.Rprofile
file.
Installation
GDAL
You’ll need GDAL installed first. You may want
to use GDAL >= 0.9-1
since that version or later can read TopoJSON
format files as well, which aren’t required here, but may be useful.
Install GDAL:
- OSX - From http://www.kyngchaos.com/software/frameworks
- Linux - run
sudo apt-get install gdal-bin
reference - Windows - From http://trac.osgeo.org/osgeo4w/
Then when you install the R package rgdal
(rgeos
also requires
GDAL), you’ll most likely need to specify where you’re gdal-config
file is on your machine, as well as a few other things. I have an OSX
Mavericks machine, and this works for me (there’s no binary for
Mavericks, so install the source
version):
install.packages("http://cran.r-project.org/src/contrib/rgdal_0.9-1.tar.gz", repos = NULL, type="source", configure.args = "--with-gdal-config=/Library/Frameworks/GDAL.framework/Versions/1.10/unix/bin/gdal-config --with-proj-include=/Library/Frameworks/PROJ.framework/unix/include --with-proj-lib=/Library/Frameworks/PROJ.framework/unix/lib")
The rest of the installation should be easy. If not, let us know.
Stable version from CRAN
install.packages("rnoaa")
or development version from GitHub
devtools::install_github("ropensci/rnoaa")
Load rnoaa
library('rnoaa')
NCDC v2 API data
Fetch list of city locations in descending order
ncdc_locs(locationcategoryid='CITY', sortfield='name', sortorder='desc')
#> $meta
#> $meta$totalCount
#> [1] 1987
#>
#> $meta$pageCount
#> [1] 25
#>
#> $meta$offset
#> [1] 1
#>
#>
#> $data
#> mindate maxdate name datacoverage id
#> 1 1892-08-01 2018-10-31 Zwolle, NL 1.0000 CITY:NL000012
#> 2 1901-01-01 2018-12-07 Zurich, SZ 1.0000 CITY:SZ000007
#> 3 1957-07-01 2018-12-07 Zonguldak, TU 1.0000 CITY:TU000057
#> 4 1906-01-01 2018-12-07 Zinder, NG 0.9025 CITY:NG000004
#> 5 1973-01-01 2018-12-07 Ziguinchor, SG 1.0000 CITY:SG000004
#> 6 1938-01-01 2018-12-07 Zhytomyra, UP 0.9723 CITY:UP000025
#> 7 1948-03-01 2018-12-07 Zhezkazgan, KZ 0.9302 CITY:KZ000017
#> 8 1951-01-01 2018-12-07 Zhengzhou, CH 1.0000 CITY:CH000045
#> 9 1941-01-01 2018-10-31 Zaragoza, SP 1.0000 CITY:SP000021
#> 10 1936-01-01 2009-06-17 Zaporiyhzhya, UP 1.0000 CITY:UP000024
#> 11 1957-01-01 2018-12-07 Zanzibar, TZ 0.8016 CITY:TZ000019
#> 12 1973-01-01 2018-12-07 Zanjan, IR 0.9105 CITY:IR000020
#> 13 1893-01-01 2018-12-10 Zanesville, OH US 1.0000 CITY:US390029
#> 14 1912-01-01 2017-06-19 Zahle, LE 0.9819 CITY:LE000004
#> 15 1951-01-01 2018-12-07 Zahedan, IR 0.9975 CITY:IR000019
#> 16 1860-12-01 2018-12-07 Zagreb, HR 1.0000 CITY:HR000002
#> 17 1975-08-29 2018-12-07 Zacatecas, MX 0.9306 CITY:MX000036
#> 18 1947-01-01 2018-12-07 Yuzhno-Sakhalinsk, RS 1.0000 CITY:RS000081
#> 19 1893-01-01 2018-12-10 Yuma, AZ US 1.0000 CITY:US040015
#> 20 1942-02-01 2018-12-10 Yucca Valley, CA US 1.0000 CITY:US060048
#> 21 1885-01-01 2018-12-10 Yuba City, CA US 1.0000 CITY:US060047
#> 22 1998-02-01 2018-12-07 Yozgat, TU 0.9993 CITY:TU000056
#> 23 1893-01-01 2018-12-10 Youngstown, OH US 1.0000 CITY:US390028
#> 24 1894-01-01 2018-12-10 York, PA US 1.0000 CITY:US420024
#> 25 1869-01-01 2018-12-10 Yonkers, NY US 1.0000 CITY:US360031
#>
#> attr(,"class")
#> [1] "ncdc_locs"
Get info on a station by specifying a dataset, locationtype, location, and station
ncdc_stations(datasetid='GHCND', locationid='FIPS:12017', stationid='GHCND:USC00084289')
#> $meta
#> NULL
#>
#> $data
#> elevation mindate maxdate latitude name
#> 1 12.2 1899-02-01 2018-12-09 28.8029 INVERNESS 3 SE, FL US
#> datacoverage id elevationUnit longitude
#> 1 1 GHCND:USC00084289 METERS -82.3126
#>
#> attr(,"class")
#> [1] "ncdc_stations"
Search for data
out <- ncdc(datasetid='NORMAL_DLY', stationid='GHCND:USW00014895', datatypeid='dly-tmax-normal', startdate = '2010-05-01', enddate = '2010-05-10')
See a data.frame
head( out$data )
#> # A tibble: 6 x 5
#> date datatype station value fl_c
#> <chr> <chr> <chr> <int> <chr>
#> 1 2010-05-01T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895 652 S
#> 2 2010-05-02T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895 655 S
#> 3 2010-05-03T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895 658 S
#> 4 2010-05-04T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895 661 S
#> 5 2010-05-05T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895 663 S
#> 6 2010-05-06T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895 666 S
Plot data, super simple, but it’s a start
out <- ncdc(datasetid='GHCND', stationid='GHCND:USW00014895', datatypeid='PRCP', startdate = '2010-05-01', enddate = '2010-10-31', limit=500)
ncdc_plot(out, breaks="1 month", dateformat="%d/%m")
More plotting
You can pass many outputs from calls to the noaa
function in to the
ncdc_plot
function.
out1 <- ncdc(datasetid='GHCND', stationid='GHCND:USW00014895', datatypeid='PRCP', startdate = '2010-03-01', enddate = '2010-05-31', limit=500)
out2 <- ncdc(datasetid='GHCND', stationid='GHCND:USW00014895', datatypeid='PRCP', startdate = '2010-09-01', enddate = '2010-10-31', limit=500)
ncdc_plot(out1, out2, breaks="45 days")
Get table of all datasets
ncdc_datasets()
#> $meta
#> $meta$offset
#> [1] 1
#>
#> $meta$count
#> [1] 11
#>
#> $meta$limit
#> [1] 25
#>
#>
#> $data
#> uid mindate maxdate name
#> 1 gov.noaa.ncdc:C00861 1763-01-01 2018-12-09 Daily Summaries
#> 2 gov.noaa.ncdc:C00946 1763-01-01 2018-11-01 Global Summary of the Month
#> 3 gov.noaa.ncdc:C00947 1763-01-01 2018-01-01 Global Summary of the Year
#> 4 gov.noaa.ncdc:C00345 1991-06-05 2018-12-10 Weather Radar (Level II)
#> 5 gov.noaa.ncdc:C00708 1994-05-20 2018-12-07 Weather Radar (Level III)
#> 6 gov.noaa.ncdc:C00821 2010-01-01 2010-01-01 Normals Annual/Seasonal
#> 7 gov.noaa.ncdc:C00823 2010-01-01 2010-12-31 Normals Daily
#> 8 gov.noaa.ncdc:C00824 2010-01-01 2010-12-31 Normals Hourly
#> 9 gov.noaa.ncdc:C00822 2010-01-01 2010-12-01 Normals Monthly
#> 10 gov.noaa.ncdc:C00505 1970-05-12 2014-01-01 Precipitation 15 Minute
#> 11 gov.noaa.ncdc:C00313 1900-01-01 2014-01-01 Precipitation Hourly
#> datacoverage id
#> 1 1.00 GHCND
#> 2 1.00 GSOM
#> 3 1.00 GSOY
#> 4 0.95 NEXRAD2
#> 5 0.95 NEXRAD3
#> 6 1.00 NORMAL_ANN
#> 7 1.00 NORMAL_DLY
#> 8 1.00 NORMAL_HLY
#> 9 1.00 NORMAL_MLY
#> 10 0.25 PRECIP_15
#> 11 1.00 PRECIP_HLY
#>
#> attr(,"class")
#> [1] "ncdc_datasets"
Get data category data and metadata
ncdc_datacats(locationid = 'CITY:US390029')
#> $meta
#> $meta$totalCount
#> [1] 38
#>
#> $meta$pageCount
#> [1] 25
#>
#> $meta$offset
#> [1] 1
#>
#>
#> $data
#> name id
#> 1 Annual Agricultural ANNAGR
#> 2 Annual Degree Days ANNDD
#> 3 Annual Precipitation ANNPRCP
#> 4 Annual Temperature ANNTEMP
#> 5 Autumn Agricultural AUAGR
#> 6 Autumn Degree Days AUDD
#> 7 Autumn Precipitation AUPRCP
#> 8 Autumn Temperature AUTEMP
#> 9 Computed COMP
#> 10 Computed Agricultural COMPAGR
#> 11 Degree Days DD
#> 12 Dual-Pol Moments DUALPOLMOMENT
#> 13 Echo Tops ECHOTOP
#> 14 Hydrometeor Type HYDROMETEOR
#> 15 Miscellany MISC
#> 16 Other OTHER
#> 17 Overlay OVERLAY
#> 18 Precipitation PRCP
#> 19 Reflectivity REFLECTIVITY
#> 20 Sky cover & clouds SKY
#> 21 Spring Agricultural SPAGR
#> 22 Spring Degree Days SPDD
#> 23 Spring Precipitation SPPRCP
#> 24 Spring Temperature SPTEMP
#> 25 Summer Agricultural SUAGR
#>
#> attr(,"class")
#> [1] "ncdc_datacats"
Tornado data
The function tornadoes()
simply gets all the data. So the call
takes a while, but once done, is fun to play with.
shp <- tornadoes()
#> OGR data source with driver: ESRI Shapefile
#> Source: "/home/jose/.cache/rnoaa/tornadoes/torn", layer: "torn"
#> with 62520 features
#> It has 21 fields
library('sp')
plot(shp)
HOMR metadata
In this example, search for metadata for a single station ID
homr(qid = 'COOP:046742')
#> $`20002078`
#> $`20002078`$id
#> [1] "20002078"
#>
#> $`20002078`$head
#> preferredName latitude_dec longitude_dec precision
#> 1 PASO ROBLES MUNICIPAL AP, CA 35.6697 -120.6283 DDddddd
#> por.beginDate por.endDate
#> 1 1949-10-05T00:00:00.000 Present
#>
#> $`20002078`$namez
#> name nameType
#> 1 PASO ROBLES MUNICIPAL AP COOP
#> 2 PASO ROBLES MUNICIPAL AP PRINCIPAL
#> 3 PASO ROBLES MUNICIPAL ARPT PUB
#>
#> $`20002078`$identifiers
#> idType id
#> 1 GHCND USW00093209
#> 2 GHCNMLT USW00093209
...
Storm data
Get storm data for the year 2010
storm_data(year = 2010)
#> # A tibble: 2,787 x 200
#> serial_num season num basin sub_basin name iso_time nature latitude
#> <chr> <int> <int> <chr> <chr> <chr> <chr> <chr> <dbl>
#> 1 2009317S1… 2010 1 " SI" " MM" ANJA 2009-11… " TS" -9.5
#> 2 2009317S1… 2010 1 " SI" " MM" ANJA 2009-11… " TS" -10.2
#> 3 2009317S1… 2010 1 " SI" " MM" ANJA 2009-11… " TS" -11.1
#> 4 2009317S1… 2010 1 " SI" " MM" ANJA 2009-11… " TS" -11.9
#> 5 2009317S1… 2010 1 " SI" " MM" ANJA 2009-11… " TS" -12.5
#> 6 2009317S1… 2010 1 " SI" " MM" ANJA 2009-11… " TS" -12.8
#> 7 2009317S1… 2010 1 " SI" " MM" ANJA 2009-11… " TS" -12.9
#> 8 2009317S1… 2010 1 " SI" " MM" ANJA 2009-11… " TS" -12.9
#> 9 2009317S1… 2010 1 " SI" " MM" ANJA 2009-11… " TS" -13
#> 10 2009317S1… 2010 1 " SI" " MM" ANJA 2009-11… " TS" -13.1
#> # ... with 2,777 more rows, and 191 more variables: longitude <dbl>,
#> # wind.wmo. <dbl>, pres.wmo. <dbl>, center <chr>,
#> # wind.wmo..percentile <dbl>, pres.wmo..percentile <dbl>,
#> # track_type <chr>, latitude_for_mapping <dbl>,
#> # longitude_for_mapping <dbl>, current.basin <chr>,
#> # hurdat_atl_lat <dbl>, hurdat_atl_lon <dbl>, hurdat_atl_grade <dbl>,
#> # hurdat_atl_wind <dbl>, hurdat_atl_pres <dbl>, td9636_lat <dbl>,
...
GEFS data
Get forecast for a certain variable.
res <- gefs("Total_precipitation_surface_6_Hour_Accumulation_ens", lat = 46.28125, lon = -116.2188)
head(res$data)
#> Total_precipitation_surface_6_Hour_Accumulation_ens lon lat ens time2
#> 1 0.45 244 46 0 6
#> 2 0.40 244 46 1 6
#> 3 0.18 244 46 2 6
#> 4 0.30 244 46 3 6
#> 5 0.60 244 46 4 6
#> 6 0.13 244 46 5 6
Argo buoys data
There are a suite of functions for Argo data, a few egs:
# Spatial search - by bounding box
argo_search("coord", box = c(-40, 35, 3, 2))
# Time based search
argo_search("coord", yearmin = 2007, yearmax = 2009)
# Data quality based search
argo_search("coord", pres_qc = "A", temp_qc = "A")
# Search on partial float id number
argo_qwmo(qwmo = 49)
# Get data
argo(dac = "meds", id = 4900881, cycle = 127, dtype = "D")
CO-OPS data
Get daily mean water level data at Fairport, OH (9063053)
coops_search(station_name = 9063053, begin_date = 20150927, end_date = 20150928,
product = "daily_mean", datum = "stnd", time_zone = "lst")
#> $metadata
#> $metadata$id
#> [1] "9063053"
#>
#> $metadata$name
#> [1] "Fairport"
#>
#> $metadata$lat
#> [1] "41.7597"
#>
#> $metadata$lon
#> [1] "-81.2811"
#>
#>
#> $data
#> t v f
#> 1 2015-09-27 174.430 0,0
#> 2 2015-09-28 174.422 0,0
Contributors
Meta
- Please report any issues or bugs.
- License: MIT
- Get citation information for
rnoaa
in R doingcitation(package = 'rnoaa')
- Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its
terms.