Learn R Programming

BICORN (version 0.1.0)

Integrative Inference of De Novo Cis-Regulatory Modules

Description

Prior transcription factor binding knowledge and target gene expression data are integrated in a Bayesian framework for functional cis-regulatory module inference. Using Gibbs sampling, we iteratively estimate transcription factor associations for each gene, regulation strength for each binding event and the hidden activity for each transcription factor.

Copy Link

Version

Install

install.packages('BICORN')

Monthly Downloads

225

Version

0.1.0

License

GPL-2

Maintainer

Xi Chen

Last Published

June 6th, 2018

Functions in BICORN (0.1.0)

C_old

TF-gene binding network sampled from the previous round
X_sampling

Transcription Factor Activity Sampling Function
baseline_sampling

Gene Baseline Expression Sampling Function
beta

Inverse-gamma distribution hyper-parameter beta
Exp_genes

Genes in the expression data
X

Transcription factr activity matrix
BICORN

BICORN Algorithm Function
C_sampling_cluster

cis-Regulatory Module Sampling Function
Exp_data

Gene expression data
sigmanoise_sampling

Fitting Residule Variance Sampling Function
sigma_noise

Variance of gene expression fitting residuals.
A_sampling

Regulation Strength Sampling Function
Binding_TFs

TFs in the prior binding network
Binding_genes

Genes in the prior binding network
data_integration

Data Initialization for BICORN
X_old

Transcription factr activity matrix sampled from the previous round
sigma_A

Regulation strength variance
A_old

TF-gene regulation strength matrix sampled from the previous round
A

TF-gene regulation strength matrix
Binding_matrix

Prior TF-gene binding network
C

TF-gene binding network
C_prior

Prior TF-gene binding network
base_line

Gene baseline expression
base_line_old

Gene baseline expression sampled from the previous round.
sigma_X

Transcription factor activity variance
Y

Gene expression data used for module inference
sigma_baseline

Variance of baseline gene expression.
alpha

Inverse-gamma distribution hyper-parameter alpha