Rdocumentation
powered by
Learn R Programming
ggpicrust2 vignettes
Copy Link
Link to current version
Version
Version
2.5.10
2.5.2
2.3.2
2.1.2
2.0.0
1.7.3
1.7.2
1.7.1
1.7.0
1.6.5
1.6.3
1.6.0
1.5.0
1.4.9
1.4.8
Install
install.packages('ggpicrust2')
Monthly Downloads
583
Version
2.5.10
License
MIT + file LICENSE
Issues
85
Pull Requests
3
Stars
181
Forks
26
Repository
https://github.com/cafferychen777/ggpicrust2
Maintainer
Chen Yang
Last Published
February 12th, 2026
Functions in ggpicrust2 (2.5.10)
Search all functions
generate_nested_colors
Generate colors for nested grouping variables
get_available_themes
Get Available Color Themes
import_MicrobiomeAnalyst_daa_results
Import Differential Abundance Analysis (DAA) results from MicrobiomeAnalyst
.build_continuous_scale
Internal: build a continuous ggplot2 scale layer from colors or ggplot2 scale
ko_abundance
KO Abundance Dataset
kegg_abundance
KEGG Abundance Dataset
ko_reference
KEGG Orthology (KO) Reference Dataset
ggpicrust2
This function integrates pathway name/description annotations, ten of the most advanced differential abundance (DA) methods, and visualization of DA results.
gsea_pathway_annotation
Annotate GSEA results with pathway information
ko2kegg_abundance
Convert KO abundance in picrust2 export files to KEGG pathway abundance
get_color_theme
Get Color Theme
kegg_pathway_reference
KEGG Pathway Name Reference Dataset
pathway_daa
Differential Abundance Analysis for Predicted Functional Pathways
pathway_errorbar
The function pathway_errorbar() is used to visualize the results of functional pathway differential abundance analysis as error bar plots.
legend_annotation_utils
Legend and Annotation Utilities for ggpicrust2
pathway_annotation
Pathway information annotation
metacyc_abundance
MetaCyc Abundance Dataset
metacyc_reference
MetaCyc Pathway Reference Dataset
ko_to_kegg_reference
KO to KEGG Pathway Reference Data
metacyc_to_ec_reference
MetaCyc Pathway to EC Number Mapping Dataset
ko_to_go_reference
KO to GO Reference Mapping Dataset
metadata
Metadata for ggpicrust2 Demonstration
pathway_volcano
Volcano Plot for Pathway Differential Abundance Analysis
pathway_gsea
Gene Set Enrichment Analysis for PICRUSt2 output
prepare_gene_sets
Prepare gene sets for GSEA
pathway_errorbar_table
Generate Abundance Statistics Table for Pathway Analysis
preview_color_theme
Preview Color Theme
resolve_annotation_overlaps
Detect and Resolve Annotation Overlaps
require_column
Require a column exists in a data frame
pathway_heatmap
Create pathway heatmap with support for multiple grouping variables
pathway_ridgeplot
Ridge Plot for GSEA Results
pathway_pca
Perform Principal Component Analysis (PCA) on functional pathway abundance data
visualize_gsea
Visualize GSEA results
validate_daa_results
Validate DAA results data frame
run_fgsea
Run fgsea using the recommended fgseaMultilevel method
validate_group_sizes
Validate group sizes for statistical analysis
safe_extract
Safely Extract Elements from a List
smart_color_selection
Smart Color Selection
run_limma_gsea
Run limma-based gene set analysis (camera/fry)
calculate_log2_fold_change
Calculate log2 fold change with consistent pseudocount handling
compare_gsea_daa
Compare GSEA and DAA results
compare_metagenome_results
Compare Metagenome Results
color_themes
Color Theme System for ggpicrust2
compare_daa_results
Compare the Consistency of Statistically Significant Features
calculate_smart_text_size
Smart Text Size Calculator
create_pathway_class_theme
Create Pathway Class Annotation Theme
build_design_matrix
Build design matrix for limma analysis
daa_results_df
DAA Results Dataset
calculate_abundance_stats
Helper function to calculate abundance statistics for differential analysis
daa_annotated_results_df
Differentially Abundant Analysis Results with Annotation
create_dendrogram
Create dendrogram plot from hierarchical clustering
calculate_pseudocount
Calculate data-driven pseudocount for log transformation
data_utils
Data Utilities for ggpicrust2
calculate_rank_metric
Calculate rank metric for GSEA
create_empty_plot
Create empty plot for edge cases
.as_color_vector
Internal: coerce user 'scale' input to a vector of colors (or NULL) Accepts character vector or function(n)->colors. Returns character vector or NULL.
create_gradient_colors
Create Gradient Colors
create_legend_theme
Create Enhanced Legend Theme
.is_ggplot_scale
Internal: detect if an object is a ggplot2 Scale
create_network_plot
Create network visualization of GSEA results
create_heatmap_plot
Create heatmap visualization of GSEA results
.build_discrete_fill_for_direction
Internal: build a discrete fill scale for barplot direction
ec_reference
EC Number Reference Dataset
.build_heatmap_col_fun
Internal: build a circlize colorRamp2 function for ComplexHeatmap from user scale
format_pvalue_smart
Smart P-value Formatting
get_significance_stars
Get Significance Stars
get_significance_colors
Get Significance Colors