Learn R Programming

mlr3learners (version 0.5.1)

mlr_learners_classif.log_reg: Logistic Regression Classification Learner

Description

Classification via logistic regression. Calls stats::glm() with family set to "binomial".

Arguments

Internal Encoding

Starting with mlr3 v0.5.0, the order of class labels is reversed prior to model fitting to comply to the stats::glm() convention that the negative class is provided as the first factor level.

Custom mlr3 defaults

  • model:

    • Actual default: TRUE.

    • Adjusted default: FALSE.

    • Reason for change: Save some memory.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("classif.log_reg")
lrn("classif.log_reg")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3learners, 'stats'

Parameters

Id Type Default Levels Range
dispersion list NULL -
epsilon numeric 1e-08 \((-\infty, \infty)\)
etastart list - -
maxit numeric 25 \((-\infty, \infty)\)
model logical TRUE TRUE, FALSE -
mustart list - -
offset list - -
singular.ok logical TRUE TRUE, FALSE -
start list NULL -
trace logical FALSE TRUE, FALSE -
x logical FALSE TRUE, FALSE -
y logical TRUE TRUE, FALSE -

Contrasts

To ensure reproducibility, this learner always uses the default contrasts:

Setting the option "contrasts" does not have any effect. Instead, set the respective hyperparameter or use mlr3pipelines to create dummy features.

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLogReg

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

LearnerClassifLogReg$new()

Method loglik()

Extract the log-likelihood (e.g., via stats::logLik() from the fitted model.

Usage

LearnerClassifLogReg$loglik()

Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifLogReg$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

See Also

  • Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners

  • Package mlr3extralearners for more learners.

  • Dictionary of Learners: mlr_learners

  • as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).

  • mlr3pipelines to combine learners with pre- and postprocessing steps.

  • Extension packages for additional task types:

    • mlr3proba for probabilistic supervised regression and survival analysis.

    • mlr3cluster for unsupervised clustering.

  • mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.

Other Learner: mlr_learners_classif.cv_glmnet, mlr_learners_classif.glmnet, mlr_learners_classif.kknn, mlr_learners_classif.lda, mlr_learners_classif.multinom, mlr_learners_classif.naive_bayes, mlr_learners_classif.nnet, mlr_learners_classif.qda, mlr_learners_classif.ranger, mlr_learners_classif.svm, mlr_learners_classif.xgboost, mlr_learners_regr.cv_glmnet, mlr_learners_regr.glmnet, mlr_learners_regr.kknn, mlr_learners_regr.km, mlr_learners_regr.lm, mlr_learners_regr.ranger, mlr_learners_regr.svm, mlr_learners_regr.xgboost, mlr_learners_surv.cv_glmnet, mlr_learners_surv.glmnet, mlr_learners_surv.ranger, mlr_learners_surv.xgboost

Examples

Run this code
# NOT RUN {
if (requireNamespace("stats", quietly = TRUE)) {
  learner = mlr3::lrn("classif.log_reg")
  print(learner)

  # available parameters:
learner$param_set$ids()
}
# }

Run the code above in your browser using DataLab