Learn R Programming

mlr3learners (version 0.5.1)

mlr_learners_regr.lm: Linear Model Regression Learner

Description

Ordinary linear regression. Calls stats::lm().

Arguments

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("regr.lm")
lrn("regr.lm")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”, “se”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “character”

  • Required Packages: mlr3, mlr3learners, 'stats'

Parameters

Id Type Default Levels Range
df numeric Inf \((-\infty, \infty)\)
interval character - none, confidence, prediction -
level numeric 0.95 \((-\infty, \infty)\)
model logical TRUE TRUE, FALSE -
offset logical - TRUE, FALSE -
pred.var list - -
qr logical TRUE TRUE, FALSE -
scale numeric NULL \((-\infty, \infty)\)
singular.ok logical TRUE TRUE, FALSE -
x logical FALSE TRUE, FALSE -
y logical FALSE TRUE, FALSE -

Contrasts

To ensure reproducibility, this learner always uses the default contrasts:

Setting the option "contrasts" does not have any effect. Instead, set the respective hyperparameter or use mlr3pipelines to create dummy features.

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrLM

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

LearnerRegrLM$new()

Method loglik()

Extract the log-likelihood (e.g., via stats::logLik() from the fitted model.

Usage

LearnerRegrLM$loglik()

Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrLM$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

See Also

  • Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners

  • Package mlr3extralearners for more learners.

  • Dictionary of Learners: mlr_learners

  • as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).

  • mlr3pipelines to combine learners with pre- and postprocessing steps.

  • Extension packages for additional task types:

    • mlr3proba for probabilistic supervised regression and survival analysis.

    • mlr3cluster for unsupervised clustering.

  • mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.

Other Learner: mlr_learners_classif.cv_glmnet, mlr_learners_classif.glmnet, mlr_learners_classif.kknn, mlr_learners_classif.lda, mlr_learners_classif.log_reg, mlr_learners_classif.multinom, mlr_learners_classif.naive_bayes, mlr_learners_classif.nnet, mlr_learners_classif.qda, mlr_learners_classif.ranger, mlr_learners_classif.svm, mlr_learners_classif.xgboost, mlr_learners_regr.cv_glmnet, mlr_learners_regr.glmnet, mlr_learners_regr.kknn, mlr_learners_regr.km, mlr_learners_regr.ranger, mlr_learners_regr.svm, mlr_learners_regr.xgboost, mlr_learners_surv.cv_glmnet, mlr_learners_surv.glmnet, mlr_learners_surv.ranger, mlr_learners_surv.xgboost

Examples

Run this code
# NOT RUN {
if (requireNamespace("stats", quietly = TRUE)) {
  learner = mlr3::lrn("regr.lm")
  print(learner)

  # available parameters:
learner$param_set$ids()
}
# }

Run the code above in your browser using DataLab