Random regression forest.
Calls ranger::ranger()
from package ranger.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
mlr_learners$get("regr.ranger") lrn("regr.ranger")
Task type: “regr”
Predict Types: “response”, “se”
Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”
Required Packages: mlr3, mlr3learners, ranger
Id | Type | Default | Levels | Range |
alpha | numeric | 0.5 | \((-\infty, \infty)\) | |
always.split.variables | list | - | - | |
holdout | logical | FALSE | TRUE, FALSE | - |
importance | character | - | none, impurity, impurity_corrected, permutation | - |
keep.inbag | logical | FALSE | TRUE, FALSE | - |
max.depth | integer | NULL | \([0, \infty)\) | |
min.node.size | integer | 5 | \([1, \infty)\) | |
min.prop | numeric | 0.1 | \((-\infty, \infty)\) | |
minprop | numeric | 0.1 | \((-\infty, \infty)\) | |
mtry | integer | - | \([1, \infty)\) | |
mtry.ratio | numeric | - | \([0, 1]\) | |
num.random.splits | integer | 1 | \([1, \infty)\) | |
num.threads | integer | 1 | \([1, \infty)\) | |
num.trees | integer | 500 | \([1, \infty)\) | |
oob.error | logical | TRUE | TRUE, FALSE | - |
quantreg | logical | FALSE | TRUE, FALSE | - |
regularization.factor | list | 1 | - | |
regularization.usedepth | logical | FALSE | TRUE, FALSE | - |
replace | logical | TRUE | TRUE, FALSE | - |
respect.unordered.factors | character | ignore | ignore, order, partition | - |
sample.fraction | numeric | - | \([0, 1]\) | |
save.memory | logical | FALSE | TRUE, FALSE | - |
scale.permutation.importance | logical | FALSE | TRUE, FALSE | - |
se.method | character | infjack | jack, infjack | - |
seed | integer | NULL | \((-\infty, \infty)\) | |
split.select.weights | list | NULL | - | |
splitrule | character | variance | variance, extratrees, maxstat | - |
verbose | logical | TRUE | TRUE, FALSE | - |
write.forest | logical | TRUE | TRUE, FALSE | - |
num.threads
:
Actual default: NULL
, triggering auto-detection of the number of CPUs.
Adjusted value: 1.
Reason for change: Conflicting with parallelization via future.
mtry
:
This hyperparameter can alternatively be set via our hyperparameter mtry.ratio
as mtry = max(ceiling(mtry.ratio * n_features), 1)
.
Note that mtry
and mtry.ratio
are mutually exclusive.
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrRanger
new()
Creates a new instance of this R6 class.
LearnerRegrRanger$new()
importance()
The importance scores are extracted from the model slot variable.importance
.
Parameter importance.mode
must be set to "impurity"
, "impurity_corrected"
, or
"permutation"
LearnerRegrRanger$importance()
Named numeric()
.
oob_error()
The out-of-bag error, extracted from model slot prediction.error
.
LearnerRegrRanger$oob_error()
numeric(1)
.
clone()
The objects of this class are cloneable with this method.
LearnerRegrRanger$clone(deep = FALSE)
deep
Whether to make a deep clone.
Wright, N. M, Ziegler, Andreas (2017). “ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R.” Journal of Statistical Software, 77(1), 1--17. 10.18637/jss.v077.i01.
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5--32. ISSN 1573-0565, 10.1023/A:1010933404324.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_classif.cv_glmnet
,
mlr_learners_classif.glmnet
,
mlr_learners_classif.kknn
,
mlr_learners_classif.lda
,
mlr_learners_classif.log_reg
,
mlr_learners_classif.multinom
,
mlr_learners_classif.naive_bayes
,
mlr_learners_classif.nnet
,
mlr_learners_classif.qda
,
mlr_learners_classif.ranger
,
mlr_learners_classif.svm
,
mlr_learners_classif.xgboost
,
mlr_learners_regr.cv_glmnet
,
mlr_learners_regr.glmnet
,
mlr_learners_regr.kknn
,
mlr_learners_regr.km
,
mlr_learners_regr.lm
,
mlr_learners_regr.svm
,
mlr_learners_regr.xgboost
,
mlr_learners_surv.cv_glmnet
,
mlr_learners_surv.glmnet
,
mlr_learners_surv.ranger
,
mlr_learners_surv.xgboost
# NOT RUN {
if (requireNamespace("ranger", quietly = TRUE)) {
learner = mlr3::lrn("regr.ranger")
print(learner)
# available parameters:
learner$param_set$ids()
}
# }
Run the code above in your browser using DataLab