Learn R Programming

mlr3learners (version 0.5.1)

mlr_learners_regr.cv_glmnet: GLM with Elastic Net Regularization Regression Learner

Description

Generalized linear models with elastic net regularization. Calls glmnet::cv.glmnet() from package glmnet.

The default for hyperparameter family is set to "gaussian".

Arguments

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("regr.cv_glmnet")
lrn("regr.cv_glmnet")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3learners, glmnet

Parameters

Id Type Default Levels Range
alignment character lambda lambda, fraction -
alpha numeric 1 \([0, 1]\)
big numeric 9.9e+35 \((-\infty, \infty)\)
devmax numeric 0.999 \([0, 1]\)
dfmax integer - \([0, \infty)\)
eps numeric 1e-06 \([0, 1]\)
epsnr numeric 1e-08 \([0, 1]\)
exclude integer - \([1, \infty)\)
exmx numeric 250 \((-\infty, \infty)\)
family character gaussian gaussian, poisson -
fdev numeric 1e-05 \([0, 1]\)
foldid list NULL -
gamma list - -
grouped logical TRUE TRUE, FALSE -
intercept logical TRUE TRUE, FALSE -
keep logical FALSE TRUE, FALSE -
lambda list - -
lambda.min.ratio numeric - \([0, 1]\)
lower.limits list - -
maxit integer 100000 \([1, \infty)\)
mnlam integer 5 \([1, \infty)\)
mxit integer 100 \([1, \infty)\)
mxitnr integer 25 \([1, \infty)\)
nfolds integer 10 \([3, \infty)\)
nlambda integer 100 \([1, \infty)\)
offset list NULL -
parallel logical FALSE TRUE, FALSE -
penalty.factor list - -
pmax integer - \([0, \infty)\)
pmin numeric 1e-09 \([0, 1]\)
prec numeric 1e-10 \((-\infty, \infty)\)
predict.gamma numeric gamma.1se \((-\infty, \infty)\)
relax logical FALSE TRUE, FALSE -
s numeric lambda.1se \([0, \infty)\)
standardize logical TRUE TRUE, FALSE -
standardize.response logical FALSE TRUE, FALSE -
thresh numeric 1e-07 \([0, \infty)\)
trace.it integer 0 \([0, 1]\)
type.gaussian character - covariance, naive -
type.logistic character - Newton, modified.Newton -
type.measure character deviance deviance, class, auc, mse, mae -
type.multinomial character - ungrouped, grouped -
upper.limits list - -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrCVGlmnet

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

LearnerRegrCVGlmnet$new()

Method selected_features()

Returns the set of selected features as reported by glmnet::predict.glmnet() with type set to "nonzero".

Usage

LearnerRegrCVGlmnet$selected_features(lambda = NULL)

Arguments

lambda

(numeric(1)) Custom lambda, defaults to the active lambda depending on parameter set.

Returns

(character()) of feature names.

Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrCVGlmnet$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

References

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1--22. 10.18637/jss.v033.i01.

See Also

  • Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners

  • Package mlr3extralearners for more learners.

  • Dictionary of Learners: mlr_learners

  • as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).

  • mlr3pipelines to combine learners with pre- and postprocessing steps.

  • Extension packages for additional task types:

    • mlr3proba for probabilistic supervised regression and survival analysis.

    • mlr3cluster for unsupervised clustering.

  • mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.

Other Learner: mlr_learners_classif.cv_glmnet, mlr_learners_classif.glmnet, mlr_learners_classif.kknn, mlr_learners_classif.lda, mlr_learners_classif.log_reg, mlr_learners_classif.multinom, mlr_learners_classif.naive_bayes, mlr_learners_classif.nnet, mlr_learners_classif.qda, mlr_learners_classif.ranger, mlr_learners_classif.svm, mlr_learners_classif.xgboost, mlr_learners_regr.glmnet, mlr_learners_regr.kknn, mlr_learners_regr.km, mlr_learners_regr.lm, mlr_learners_regr.ranger, mlr_learners_regr.svm, mlr_learners_regr.xgboost, mlr_learners_surv.cv_glmnet, mlr_learners_surv.glmnet, mlr_learners_surv.ranger, mlr_learners_surv.xgboost

Examples

Run this code
# NOT RUN {
if (requireNamespace("glmnet", quietly = TRUE)) {
  learner = mlr3::lrn("regr.cv_glmnet")
  print(learner)

  # available parameters:
learner$param_set$ids()
}
# }

Run the code above in your browser using DataLab