Quadratic discriminant analysis.
Calls MASS::qda()
from package MASS.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
mlr_learners$get("classif.qda") lrn("classif.qda")
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3learners, MASS
Id | Type | Default | Levels | Range |
method | character | moment | moment, mle, mve, t | - |
nu | integer | - | \((-\infty, \infty)\) | |
predict.method | character | plug-in | plug-in, predictive, debiased | - |
predict.prior | list | - | - | |
prior | list | - | - |
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifQDA
new()
Creates a new instance of this R6 class.
LearnerClassifQDA$new()
clone()
The objects of this class are cloneable with this method.
LearnerClassifQDA$clone(deep = FALSE)
deep
Whether to make a deep clone.
Parameters method
and prior
exist for training and prediction but
accept different values for each. Therefore, arguments for
the predict stage have been renamed to predict.method
and predict.prior
,
respectively.
Venables WN, Ripley BD (2002). Modern Applied Statistics with S, Fourth edition. Springer, New York. ISBN 0-387-95457-0, http://www.stats.ox.ac.uk/pub/MASS4/.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_classif.cv_glmnet
,
mlr_learners_classif.glmnet
,
mlr_learners_classif.kknn
,
mlr_learners_classif.lda
,
mlr_learners_classif.log_reg
,
mlr_learners_classif.multinom
,
mlr_learners_classif.naive_bayes
,
mlr_learners_classif.nnet
,
mlr_learners_classif.ranger
,
mlr_learners_classif.svm
,
mlr_learners_classif.xgboost
,
mlr_learners_regr.cv_glmnet
,
mlr_learners_regr.glmnet
,
mlr_learners_regr.kknn
,
mlr_learners_regr.km
,
mlr_learners_regr.lm
,
mlr_learners_regr.ranger
,
mlr_learners_regr.svm
,
mlr_learners_regr.xgboost
,
mlr_learners_surv.cv_glmnet
,
mlr_learners_surv.glmnet
,
mlr_learners_surv.ranger
,
mlr_learners_surv.xgboost
# NOT RUN {
if (requireNamespace("MASS", quietly = TRUE)) {
learner = mlr3::lrn("classif.qda")
print(learner)
# available parameters:
learner$param_set$ids()
}
# }
Run the code above in your browser using DataLab