k-Nearest-Neighbor regression.
Calls kknn::kknn()
from package kknn.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
mlr_learners$get("regr.kknn") lrn("regr.kknn")
Task type: “regr”
Predict Types: “response”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3learners, kknn
Id | Type | Default | Levels | Range |
k | integer | 7 | \([1, \infty)\) | |
distance | numeric | 2 | \([0, \infty)\) | |
kernel | character | optimal | rectangular, triangular, epanechnikov, biweight, triweight, cos, inv, gaussian, rank, optimal | - |
scale | logical | TRUE | TRUE, FALSE | - |
ykernel | list | NULL | - |
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrKKNN
new()
Creates a new instance of this R6 class.
LearnerRegrKKNN$new()
clone()
The objects of this class are cloneable with this method.
LearnerRegrKKNN$clone(deep = FALSE)
deep
Whether to make a deep clone.
Hechenbichler, Klaus, Schliep, Klaus (2004). “Weighted k-nearest-neighbor techniques and ordinal classification.” Technical Report Discussion Paper 399, SFB 386, Ludwig-Maximilians University Munich. 10.5282/ubm/epub.1769.
Samworth, J R (2012). “Optimal weighted nearest neighbour classifiers.” The Annals of Statistics, 40(5), 2733--2763. 10.1214/12-AOS1049.
Cover, Thomas, Hart, Peter (1967). “Nearest neighbor pattern classification.” IEEE transactions on information theory, 13(1), 21--27. 10.1109/TIT.1967.1053964.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_classif.cv_glmnet
,
mlr_learners_classif.glmnet
,
mlr_learners_classif.kknn
,
mlr_learners_classif.lda
,
mlr_learners_classif.log_reg
,
mlr_learners_classif.multinom
,
mlr_learners_classif.naive_bayes
,
mlr_learners_classif.nnet
,
mlr_learners_classif.qda
,
mlr_learners_classif.ranger
,
mlr_learners_classif.svm
,
mlr_learners_classif.xgboost
,
mlr_learners_regr.cv_glmnet
,
mlr_learners_regr.glmnet
,
mlr_learners_regr.km
,
mlr_learners_regr.lm
,
mlr_learners_regr.ranger
,
mlr_learners_regr.svm
,
mlr_learners_regr.xgboost
,
mlr_learners_surv.cv_glmnet
,
mlr_learners_surv.glmnet
,
mlr_learners_surv.ranger
,
mlr_learners_surv.xgboost
# NOT RUN {
if (requireNamespace("kknn", quietly = TRUE)) {
learner = mlr3::lrn("regr.kknn")
print(learner)
# available parameters:
learner$param_set$ids()
}
# }
Run the code above in your browser using DataLab