Learn R Programming

mlr3learners (version 0.5.1)

mlr_learners_regr.kknn: k-Nearest-Neighbor Regression Learner

Description

k-Nearest-Neighbor regression. Calls kknn::kknn() from package kknn.

Arguments

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("regr.kknn")
lrn("regr.kknn")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3learners, kknn

Parameters

Id Type Default Levels Range
k integer 7 \([1, \infty)\)
distance numeric 2 \([0, \infty)\)
kernel character optimal rectangular, triangular, epanechnikov, biweight, triweight, cos, inv, gaussian, rank, optimal -
scale logical TRUE TRUE, FALSE -
ykernel list NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrKKNN

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

LearnerRegrKKNN$new()

Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrKKNN$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

References

Hechenbichler, Klaus, Schliep, Klaus (2004). “Weighted k-nearest-neighbor techniques and ordinal classification.” Technical Report Discussion Paper 399, SFB 386, Ludwig-Maximilians University Munich. 10.5282/ubm/epub.1769.

Samworth, J R (2012). “Optimal weighted nearest neighbour classifiers.” The Annals of Statistics, 40(5), 2733--2763. 10.1214/12-AOS1049.

Cover, Thomas, Hart, Peter (1967). “Nearest neighbor pattern classification.” IEEE transactions on information theory, 13(1), 21--27. 10.1109/TIT.1967.1053964.

See Also

  • Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners

  • Package mlr3extralearners for more learners.

  • Dictionary of Learners: mlr_learners

  • as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).

  • mlr3pipelines to combine learners with pre- and postprocessing steps.

  • Extension packages for additional task types:

    • mlr3proba for probabilistic supervised regression and survival analysis.

    • mlr3cluster for unsupervised clustering.

  • mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.

Other Learner: mlr_learners_classif.cv_glmnet, mlr_learners_classif.glmnet, mlr_learners_classif.kknn, mlr_learners_classif.lda, mlr_learners_classif.log_reg, mlr_learners_classif.multinom, mlr_learners_classif.naive_bayes, mlr_learners_classif.nnet, mlr_learners_classif.qda, mlr_learners_classif.ranger, mlr_learners_classif.svm, mlr_learners_classif.xgboost, mlr_learners_regr.cv_glmnet, mlr_learners_regr.glmnet, mlr_learners_regr.km, mlr_learners_regr.lm, mlr_learners_regr.ranger, mlr_learners_regr.svm, mlr_learners_regr.xgboost, mlr_learners_surv.cv_glmnet, mlr_learners_surv.glmnet, mlr_learners_surv.ranger, mlr_learners_surv.xgboost

Examples

Run this code
# NOT RUN {
if (requireNamespace("kknn", quietly = TRUE)) {
  learner = mlr3::lrn("regr.kknn")
  print(learner)

  # available parameters:
learner$param_set$ids()
}
# }

Run the code above in your browser using DataLab