Learn R Programming

mlr3learners (version 0.5.1)

mlr_learners_regr.svm: Support Vector Machine

Description

Support vector machine for regression. Calls e1071::svm() from package e1071.

Arguments

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("regr.svm")
lrn("regr.svm")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3learners, e1071

Parameters

Id Type Default Levels Range
cachesize numeric 40 \((-\infty, \infty)\)
coef0 numeric 0 \((-\infty, \infty)\)
cost numeric 1 \([0, \infty)\)
cross integer 0 \([0, \infty)\)
degree integer 3 \([1, \infty)\)
epsilon numeric - \([0, \infty)\)
fitted logical TRUE TRUE, FALSE -
gamma numeric - \([0, \infty)\)
kernel character radial linear, polynomial, radial, sigmoid -
nu numeric 0.5 \((-\infty, \infty)\)
scale list TRUE -
shrinking logical TRUE TRUE, FALSE -
tolerance numeric 0.001 \([0, \infty)\)
type character eps-regression eps-regression, nu-regression -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrSVM

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

LearnerRegrSVM$new()

Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrSVM$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

References

Cortes, Corinna, Vapnik, Vladimir (1995). “Support-vector networks.” Machine Learning, 20(3), 273--297. 10.1007/BF00994018.

See Also

  • Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners

  • Package mlr3extralearners for more learners.

  • Dictionary of Learners: mlr_learners

  • as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).

  • mlr3pipelines to combine learners with pre- and postprocessing steps.

  • Extension packages for additional task types:

    • mlr3proba for probabilistic supervised regression and survival analysis.

    • mlr3cluster for unsupervised clustering.

  • mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.

Other Learner: mlr_learners_classif.cv_glmnet, mlr_learners_classif.glmnet, mlr_learners_classif.kknn, mlr_learners_classif.lda, mlr_learners_classif.log_reg, mlr_learners_classif.multinom, mlr_learners_classif.naive_bayes, mlr_learners_classif.nnet, mlr_learners_classif.qda, mlr_learners_classif.ranger, mlr_learners_classif.svm, mlr_learners_classif.xgboost, mlr_learners_regr.cv_glmnet, mlr_learners_regr.glmnet, mlr_learners_regr.kknn, mlr_learners_regr.km, mlr_learners_regr.lm, mlr_learners_regr.ranger, mlr_learners_regr.xgboost, mlr_learners_surv.cv_glmnet, mlr_learners_surv.glmnet, mlr_learners_surv.ranger, mlr_learners_surv.xgboost

Examples

Run this code
# NOT RUN {
if (requireNamespace("e1071", quietly = TRUE)) {
  learner = mlr3::lrn("regr.svm")
  print(learner)

  # available parameters:
learner$param_set$ids()
}
# }

Run the code above in your browser using DataLab