Support vector machine for classification.
Calls e1071::svm()
from package e1071.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
mlr_learners$get("classif.svm") lrn("classif.svm")
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3learners, e1071
Id | Type | Default | Levels | Range |
cachesize | numeric | 40 | \((-\infty, \infty)\) | |
class.weights | list | NULL | - | |
coef0 | numeric | 0 | \((-\infty, \infty)\) | |
cost | numeric | 1 | \([0, \infty)\) | |
cross | integer | 0 | \([0, \infty)\) | |
decision.values | logical | FALSE | TRUE, FALSE | - |
degree | integer | 3 | \([1, \infty)\) | |
epsilon | numeric | - | \([0, \infty)\) | |
fitted | logical | TRUE | TRUE, FALSE | - |
gamma | numeric | - | \([0, \infty)\) | |
kernel | character | radial | linear, polynomial, radial, sigmoid | - |
nu | numeric | 0.5 | \((-\infty, \infty)\) | |
scale | list | TRUE | - | |
shrinking | logical | TRUE | TRUE, FALSE | - |
tolerance | numeric | 0.001 | \([0, \infty)\) | |
type | character | C-classification | C-classification, nu-classification | - |
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifSVM
new()
Creates a new instance of this R6 class.
LearnerClassifSVM$new()
clone()
The objects of this class are cloneable with this method.
LearnerClassifSVM$clone(deep = FALSE)
deep
Whether to make a deep clone.
Cortes, Corinna, Vapnik, Vladimir (1995). “Support-vector networks.” Machine Learning, 20(3), 273--297. 10.1007/BF00994018.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_classif.cv_glmnet
,
mlr_learners_classif.glmnet
,
mlr_learners_classif.kknn
,
mlr_learners_classif.lda
,
mlr_learners_classif.log_reg
,
mlr_learners_classif.multinom
,
mlr_learners_classif.naive_bayes
,
mlr_learners_classif.nnet
,
mlr_learners_classif.qda
,
mlr_learners_classif.ranger
,
mlr_learners_classif.xgboost
,
mlr_learners_regr.cv_glmnet
,
mlr_learners_regr.glmnet
,
mlr_learners_regr.kknn
,
mlr_learners_regr.km
,
mlr_learners_regr.lm
,
mlr_learners_regr.ranger
,
mlr_learners_regr.svm
,
mlr_learners_regr.xgboost
,
mlr_learners_surv.cv_glmnet
,
mlr_learners_surv.glmnet
,
mlr_learners_surv.ranger
,
mlr_learners_surv.xgboost
# NOT RUN {
if (requireNamespace("e1071", quietly = TRUE)) {
learner = mlr3::lrn("classif.svm")
print(learner)
# available parameters:
learner$param_set$ids()
}
# }
Run the code above in your browser using DataLab