Learn R Programming

mlr3learners (version 0.5.1)

mlr_learners_classif.nnet: Classification Neural Network Learner

Description

Single Layer Neural Network. Calls nnet::nnet.formula() from package nnet.

Note that modern neural networks with multiple layers are connected via package mlr3keras.

Arguments

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("classif.nnet")
lrn("classif.nnet")

Meta Information

  • Task type: “classif”

  • Predict Types: “prob”, “response”

  • Feature Types: “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3learners, nnet

Parameters

Id Type Default Levels Range
Hess logical FALSE TRUE, FALSE -
MaxNWts integer 1000 \([1, \infty)\)
Wts list - -
abstol numeric 1e-04 \((-\infty, \infty)\)
censored logical FALSE TRUE, FALSE -
contrasts list NULL -
decay numeric 0 \((-\infty, \infty)\)
mask list - -
maxit integer 100 \([1, \infty)\)
na.action list - -
rang numeric 0.7 \((-\infty, \infty)\)
reltol numeric 1e-08 \((-\infty, \infty)\)
size integer 3 \([0, \infty)\)
skip logical FALSE TRUE, FALSE -
subset list - -
trace logical TRUE TRUE, FALSE -

Custom mlr3 defaults

  • size:

    • Adjusted default: 3L.

    • Reason for change: no default in nnet().

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifNnet

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

LearnerClassifNnet$new()

Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifNnet$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

References

Ripley BD (1996). Pattern Recognition and Neural Networks. Cambridge University Press. 10.1017/cbo9780511812651.

See Also

  • Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners

  • Package mlr3extralearners for more learners.

  • Dictionary of Learners: mlr_learners

  • as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).

  • mlr3pipelines to combine learners with pre- and postprocessing steps.

  • Extension packages for additional task types:

    • mlr3proba for probabilistic supervised regression and survival analysis.

    • mlr3cluster for unsupervised clustering.

  • mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.

Other Learner: mlr_learners_classif.cv_glmnet, mlr_learners_classif.glmnet, mlr_learners_classif.kknn, mlr_learners_classif.lda, mlr_learners_classif.log_reg, mlr_learners_classif.multinom, mlr_learners_classif.naive_bayes, mlr_learners_classif.qda, mlr_learners_classif.ranger, mlr_learners_classif.svm, mlr_learners_classif.xgboost, mlr_learners_regr.cv_glmnet, mlr_learners_regr.glmnet, mlr_learners_regr.kknn, mlr_learners_regr.km, mlr_learners_regr.lm, mlr_learners_regr.ranger, mlr_learners_regr.svm, mlr_learners_regr.xgboost, mlr_learners_surv.cv_glmnet, mlr_learners_surv.glmnet, mlr_learners_surv.ranger, mlr_learners_surv.xgboost

Examples

Run this code
# NOT RUN {
if (requireNamespace("nnet", quietly = TRUE)) {
  learner = mlr3::lrn("classif.nnet")
  print(learner)

  # available parameters:
learner$param_set$ids()
}
# }

Run the code above in your browser using DataLab