Single Layer Neural Network.
Calls nnet::nnet.formula()
from package nnet.
Note that modern neural networks with multiple layers are connected via package mlr3keras.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
mlr_learners$get("classif.nnet") lrn("classif.nnet")
Task type: “classif”
Predict Types: “prob”, “response”
Feature Types: “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3learners, nnet
Id | Type | Default | Levels | Range |
Hess | logical | FALSE | TRUE, FALSE | - |
MaxNWts | integer | 1000 | \([1, \infty)\) | |
Wts | list | - | - | |
abstol | numeric | 1e-04 | \((-\infty, \infty)\) | |
censored | logical | FALSE | TRUE, FALSE | - |
contrasts | list | NULL | - | |
decay | numeric | 0 | \((-\infty, \infty)\) | |
mask | list | - | - | |
maxit | integer | 100 | \([1, \infty)\) | |
na.action | list | - | - | |
rang | numeric | 0.7 | \((-\infty, \infty)\) | |
reltol | numeric | 1e-08 | \((-\infty, \infty)\) | |
size | integer | 3 | \([0, \infty)\) | |
skip | logical | FALSE | TRUE, FALSE | - |
subset | list | - | - | |
trace | logical | TRUE | TRUE, FALSE | - |
size
:
Adjusted default: 3L.
Reason for change: no default in nnet()
.
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifNnet
new()
Creates a new instance of this R6 class.
LearnerClassifNnet$new()
clone()
The objects of this class are cloneable with this method.
LearnerClassifNnet$clone(deep = FALSE)
deep
Whether to make a deep clone.
Ripley BD (1996). Pattern Recognition and Neural Networks. Cambridge University Press. 10.1017/cbo9780511812651.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_classif.cv_glmnet
,
mlr_learners_classif.glmnet
,
mlr_learners_classif.kknn
,
mlr_learners_classif.lda
,
mlr_learners_classif.log_reg
,
mlr_learners_classif.multinom
,
mlr_learners_classif.naive_bayes
,
mlr_learners_classif.qda
,
mlr_learners_classif.ranger
,
mlr_learners_classif.svm
,
mlr_learners_classif.xgboost
,
mlr_learners_regr.cv_glmnet
,
mlr_learners_regr.glmnet
,
mlr_learners_regr.kknn
,
mlr_learners_regr.km
,
mlr_learners_regr.lm
,
mlr_learners_regr.ranger
,
mlr_learners_regr.svm
,
mlr_learners_regr.xgboost
,
mlr_learners_surv.cv_glmnet
,
mlr_learners_surv.glmnet
,
mlr_learners_surv.ranger
,
mlr_learners_surv.xgboost
# NOT RUN {
if (requireNamespace("nnet", quietly = TRUE)) {
learner = mlr3::lrn("classif.nnet")
print(learner)
# available parameters:
learner$param_set$ids()
}
# }
Run the code above in your browser using DataLab