Learn R Programming

mlr3learners (version 0.5.1)

mlr_learners_regr.km: Kriging Regression Learner

Description

Kriging regression. Calls DiceKriging::km() from package DiceKriging.

  • The predict type hyperparameter "type" defaults to "sk" (simple kriging).

  • The additional hyperparameter nugget.stability is used to overwrite the hyperparameter nugget with nugget.stability * var(y) before training to improve the numerical stability. We recommend a value of 1e-8.

  • The additional hyperparameter jitter can be set to add N(0, [jitter])-distributed noise to the data before prediction to avoid perfect interpolation. We recommend a value of 1e-12.

Arguments

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("regr.km")
lrn("regr.km")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”, “se”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3learners, DiceKriging

Parameters

Id Type Default Levels Range
bias.correct logical FALSE TRUE, FALSE -
checkNames logical TRUE TRUE, FALSE -
coef.cov list NULL -
coef.trend list NULL -
coef.var list NULL -
control list NULL -
cov.compute logical TRUE TRUE, FALSE -
covtype character matern5_2 gauss, matern5_2, matern3_2, exp, powexp -
estim.method character MLE MLE, LOO -
gr logical TRUE TRUE, FALSE -
iso logical FALSE TRUE, FALSE -
jitter numeric 0 \([0, \infty)\)
kernel list NULL -
knots list NULL -
light.return logical FALSE TRUE, FALSE -
lower list NULL -
multistart integer 1 \((-\infty, \infty)\)
noise.var list NULL -
nugget numeric - \((-\infty, \infty)\)
nugget.estim logical FALSE TRUE, FALSE -
nugget.stability numeric 0 \([0, \infty)\)
optim.method character BFGS BFGS, gen -
parinit list NULL -
penalty list NULL -
scaling logical FALSE TRUE, FALSE -
se.compute logical TRUE TRUE, FALSE -
type character SK SK, UK -
upper list NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrKM

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

LearnerRegrKM$new()

Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrKM$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

References

Roustant O, Ginsbourger D, Deville Y (2012). “DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization.” Journal of Statistical Software, 51(1), 1--55. 10.18637/jss.v051.i01.

See Also

  • Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners

  • Package mlr3extralearners for more learners.

  • Dictionary of Learners: mlr_learners

  • as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).

  • mlr3pipelines to combine learners with pre- and postprocessing steps.

  • Extension packages for additional task types:

    • mlr3proba for probabilistic supervised regression and survival analysis.

    • mlr3cluster for unsupervised clustering.

  • mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.

Other Learner: mlr_learners_classif.cv_glmnet, mlr_learners_classif.glmnet, mlr_learners_classif.kknn, mlr_learners_classif.lda, mlr_learners_classif.log_reg, mlr_learners_classif.multinom, mlr_learners_classif.naive_bayes, mlr_learners_classif.nnet, mlr_learners_classif.qda, mlr_learners_classif.ranger, mlr_learners_classif.svm, mlr_learners_classif.xgboost, mlr_learners_regr.cv_glmnet, mlr_learners_regr.glmnet, mlr_learners_regr.kknn, mlr_learners_regr.lm, mlr_learners_regr.ranger, mlr_learners_regr.svm, mlr_learners_regr.xgboost, mlr_learners_surv.cv_glmnet, mlr_learners_surv.glmnet, mlr_learners_surv.ranger, mlr_learners_surv.xgboost

Examples

Run this code
# NOT RUN {
if (requireNamespace("DiceKriging", quietly = TRUE)) {
  learner = mlr3::lrn("regr.km")
  print(learner)

  # available parameters:
learner$param_set$ids()
}
# }

Run the code above in your browser using DataLab